Isolation of the groESL cluster from Vibrio anguillarum and PCR detection targeting groEL gene

Abstract

Vibrio anguillarum is a major pathogenic bacterium that causes vibriosis and septicemia in fish and shellfish. In this study, we identified the groESL genes, which encode bacterial chaperonins, from V. anguillarum. The groE gene cluster consisted of a 291-bp groES gene, a 69-bp intergenic spacer region, and a 1,635-bp groEL gene order. Sequence analysis with the groESL gene of Vibrio species exhibited that the groEL gene was more species-specific and suitable than the groES gene for V. anguillarum detection. Owing to the difficulty in distinguishing V. anguillarum from the closely related V. ordalii, we compared the sequences of groEL from V. anguillarum and the groEL homolog hsp60 from V. ordalii, in order to design a primer set based on a region dissimilar between the two. PCR with the groEL primer set produced a clear 195-bp amplicon in six serotypes of V. anguillarum, whereas 23 Vibrio species of 39 samples, including V. ordalii, and 10 species of enteric bacteria gave no bands. PCR using the groEL primers also amplified a unique product from V. anguillarum-infected flounder and oyster tissues. These results demonstrate that the groEL-target PCR assay is a sensitive and species-specific tool for the detection of V. anguillarum infection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Austin B, Austin DA (1999) Characteristics of the pathogens. Bacterial pathogens: diseases of farmed and wild fish, 3rd edn. Praxis, London

    Google Scholar 

  2. 2.

    Denkin SM, Nelson DR (2004) Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol 70:4193–4204

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Peeler JT, Houghtby GA, Rainosek AP (1992) The most probable number technique. In: Downes FP, Ito K (eds) Compendium of methods for the microbiological examination of food. American Public Health Association, Washington DC, pp 105–120

    Google Scholar 

  4. 4.

    Kaysner CA, DePaola AJ (2001) Vibrio. In: Downes FP, Ito K (eds) Compendium of methods for the microbiological examination of food. American Public Health Association, Washington DC, pp 405–420

    Google Scholar 

  5. 5.

    Skov MN, Pedersen K, Larsen JL (1995) Comparison of pulsed-field gel electrophoresis, ribotypying, and plasmid profiling for typing of Vibrio anguillarum serovar O1. Appl Environ Microbiol 61:1540–1545

    CAS  PubMed  Google Scholar 

  6. 6.

    Martinez-Picado J, Alsina M, Blanch AR, Cerda M, Jofre J (1996) Species-specific detection of Vibrio anguillarum in marine aquaculture environments by selective culture and DNA hybridization. Appl Environ Microbiol 62:443–449

    CAS  PubMed  Google Scholar 

  7. 7.

    Austin B, Austin DA, Blanch AR (1997) A comparison of methods for the typing of fish-pathogenic Vibrio spp. Syst Appl Micrbiol 20:89–101

    Google Scholar 

  8. 8.

    Thompson CC, Thomson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J (2004) Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54:919–924

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dorsch M, Lane D, Stackebrandt E (1992) Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int J Syst Bacteriol 42:58–63

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kita-Tsukamoto K, Oyaizu H, Nanba K, Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Urakawa H, Kita-Tsukamoto K, Ohwada K (1997) 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiol Lett 152:125–135

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gonzalez SF, Osorio CR, Santos Y (2003) Development of a PCR-based method for the detection of Listonella anguillarum in fish tissue and blood samples. Dis Aquat Org 55:109–115

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hirono I, Masuda T, Aoki T (1996) Cloning and detection of the hemolysin gene of Vibrio anguillarum. Microb Pathog 21:173–182

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Rodkhum C, Hirono I, Crosa JH, Aoki T (2006) Multiplex PCR for simultaneous detection of five virulence hemolysin genes in Vibrio anguillarum. J Microbiol Methods 65:612–618

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Xiao P, Mo ZL, Mao YX, Wang CL, Zou YX, Li J (2009) Detection of Vibiro anguillarum by PCR amplification of the empA gene. J Fish Dis 32:293–296

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hong GE, Kim DG, Bae JY, Ahn SH, Bae SC, Kong IS (2007) Species-specific PCR detection of the fish pathogen, Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-l-alanine amidase. FEMS Microbiol Lett 269:201–206

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kim DG, Bae JY, Hong GE, Min MG, Kim JK, Kong IS (2008) Application of the rpoS gene for the detection of Vibrio anguillarum in flounder and prawn by polymerase chain reaction. J Fish Dis 31:639–647

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zügel U, Kaufmann SHE (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12:19–39

    PubMed  Google Scholar 

  19. 19.

    Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL (2006) GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 188:8044–8053

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Craig EA, Gambill BD, Nelson RJ (1993) Heat-shock proteins; molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  PubMed  Google Scholar 

  21. 21.

    Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance; degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Garduńo RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180:505–513

    PubMed  Google Scholar 

  23. 23.

    Sagane Y, Hasegawa K, Mutoh S, Kouguchi H, Suzuki T, Sunagawa H, Nakagawa T, Kamaguchi A, Okasaki S, Nakayama K, Watanabe T, Oguma K, Ohyama T (2003) Molecular characterization of GroES and GroEL homologues from Clostridium botulinum. J Protein Chem 22:99–108

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Musatovova O, Dhandayuthapani S, Baseman JB (2006) Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 188:2845–2855

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Mutharia LM, Klinck J, Yamaguchi H, Davey M (1998) Purification, characterization and immunochemical properties of a novel 60-kDa protein of Vibrio anguillarum strains. FEMS Microbiol Lett 168:111–117

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kuchanny-Ardigò D, Lipińska B (2003) Cloning and characterization of the groE heat-shock operon of the marine bacterium Vibrio harveyi. Microbiology 149:1483–1492

    Article  PubMed  Google Scholar 

  27. 27.

    Yamauchi S, Okuyama H, Morita EH, Hayashi H (2003) Gene structure and transcriptional regulation specific to the groESL operon from the psychrophilic bacterium Colwellia maris. Arch Microbiol 180:272–278

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Callison JA, Battisti JM, Sappington KN, Smitherman LS, Minnick MF (2005) Characterization and expression analysis of the groESL operon of Bartonella bacilliformis. Gene 359:53–62

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Aravindhan V, Christy AJ, Roy S, Ajitkumar P, Narayanan PR, Narayanan S (2009) Mycobacterium tuberculosis groE promoter controls the expression of the bicistronic groESL1 operon and shows differential regulation under stress conditions. FEMS Microbiol Lett 292:42–49

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sanders BM, Martin LS (1993) Stress proteins as biomarkers of contaminant exposure in archived environmental samples. Sci Total Environ 139–140:459–470

    PubMed  Google Scholar 

  31. 31.

    Ryan JA, Hightower LE (1996) Stress proteins as molecular biomarkers for environmental toxicology. EXS 77:411–424

    CAS  PubMed  Google Scholar 

  32. 32.

    Ait-Aissa S, Porche J, Arrigo A, Lambre C (2000) Activation of the hsp70 promoter by environmental inorganic and organic chemicals; relationships with cytotoxicity and lipophilicity. Toxicol 145:147–157

    CAS  Article  Google Scholar 

  33. 33.

    Kwork AYC, Wilson JT, Coulthart M, Ng L, Mutharia L, Chow AW (2002) Phylogenetic study and identification of human pathogenic Vibrio species based on partial hsp60 gene sequences. Can J Microbiol 48:903–910

    Article  Google Scholar 

  34. 34.

    Sambrook J, Russell DW (2001) Molecular cloning. In: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

  35. 35.

    Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JG, Seidman JG, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  36. 36.

    Tsai J, Hsueh P, Lin H, Chang H, Ho S, Teng L (2005) Identification of clinically relevant Enterococcus species by direct sequencing of groES and spacer region. J Clin Microbiol 43:235–241

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a project grant (YSG-RE0701) from Yeongnam Sea Grant, Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to In-Soo Kong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, DG., Kim, YR., Kim, EY. et al. Isolation of the groESL cluster from Vibrio anguillarum and PCR detection targeting groEL gene. Fish Sci 76, 803–810 (2010). https://doi.org/10.1007/s12562-010-0266-y

Download citation

Keywords

  • Vibrio anguillarum
  • groESL gene
  • PCR
  • Flounder
  • Oyster