Skip to main content

Advertisement

Log in

A PCR-based method for sex identification of critically endangered Formosa landlocked salmon

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The extinction risk in a small population depends largely on stochastic factors that affect effective population size. Unbalanced sex ratio, a form of demographic stochasticity, not only reduces the effective population size but also raises extinction risk. Sex identification is fundamental for conservation biology; however, it is extremely difficult to do in Formosa landlocked salmon Oncorhynchus masou formosanus. Because sexual dimorphism in landlocked dwarf form Formosa landlocked salmon is minimal, we developed a simple and noninvasive PCR-based method to identify sex in this critically endangered species. The OtY2m primers (derived from OtY2) amplified the male-specific marker (OtY2) in Formosa landlocked salmon. In addition, we provide a valuable tool for detection of sex ratios in wild populations for conservation management. This study contributes useful information to estimate the effective population size and analyze population viability of Formosa landlocked salmon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oshima M (1934) Life history and distribution of freshwater salmons found in the waters of Japan. Proc Fifth Pac Sci Congr 5:3751–3773

    Google Scholar 

  2. Behnke RJ, Koh TP, Needham PR (1962) Status of the landlocked salmonid fishes of Formosa with a review of Oncorhynchus masou (Brevoort). Copeia 2:400–407

    Article  Google Scholar 

  3. Watanabe M, Lin Y-L (1985) Revision of the salmonid fish in Taiwan. Bull Biogeogr Soc Jpn 40:75–85

    Google Scholar 

  4. Ohkuma K (1988) Sex ratio, age composition, and fork length of masu salmon (Oncorhynchus masou), of the Shiribetsu River, Hokkaido, Japan. Sci Rep Hokkaido Salmon Hatchery 42:37–47

    Google Scholar 

  5. Gwo J-C, Ohta H, Okuzawa K, Wu H-C (1999) Cryopreservation of sperm from the endangered Formosan landlocked salmon (Oncorhynchus masou formosanus). Theriogenology 51:569–582

    Article  CAS  Google Scholar 

  6. Healey M, Kline P, Tsai CF (2001) Saving the endangered Formosa landlocked salmon. Fisheries 26:6–14

    Article  Google Scholar 

  7. Chung L-C, Lin H-J, Yo S-P, Tzeng C-S, Yang C-H (2007) Stage-structured population matrix models for the Formosan landlocked salmon (Oncorhynchus masou formosanus) in Taiwan. Raffles Bull Zool Suppl 14:151–160

    Google Scholar 

  8. Gwo J-C, Hsu T-H, Lin K-H, Chou Y-C (2008) Genetic relationship among four subspecies of cherry salmon (Oncorhynchus masou) inferred using AFLP. Mol Phylogenet Evol 48:776–781

    Article  CAS  Google Scholar 

  9. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  10. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103

    Article  CAS  Google Scholar 

  11. Brook BW, Burgman MA, Frankham R (2000) Differences and congruencies between PVA packages: the importance of sex ratio for predictions of extinction risk. Conserv Ecol 4:6

    Google Scholar 

  12. Avise JC, Nelson WS (1989) Molecular genetic relationships of the extinct dusky seaside sparrow. Science 243:646–648

    Article  CAS  Google Scholar 

  13. Yue GH, Orban L (2001) Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction. Mar Biotechnol 3:199–204

    Article  CAS  Google Scholar 

  14. Livia L, Antonella P, Hovirag L, Mauro N, Panara F (2006) A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high-quality DNA from fish body mucus and buccal cells. Mol Ecol Notes 6:257–260

    Article  CAS  Google Scholar 

  15. Rosel PE (2003) PCR-based sex determination in Odontocete cetaceans. Conserv Genet 4:647–649

    Article  CAS  Google Scholar 

  16. Hedmark E, Flagstad O, Segerstrom P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410

    Article  CAS  Google Scholar 

  17. Kurose N, Masuda R, Tatara M (2005) Fecal DNA analysis for identifying species and sex of sympatric carnivores: a noninvasive method for conservation on the Tsushima islands, Japan. J Hered 96:688–697

    Article  CAS  Google Scholar 

  18. Sugimoto T, Nagata J, Aramilev VV, Belozor A, Higashi S, McCullough DR (2006) Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. Conserv Genet 7:799–802

    Article  Google Scholar 

  19. Lindsay AR, Belant JL (2008) A simple and improved PCR-based technique for white-tailed deer (Odocoileus virginianus) sex identification. Conserv Genet 9:443–447

    Article  CAS  Google Scholar 

  20. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  21. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  CAS  Google Scholar 

  22. Devlin RH, Biagi CA, Smailus DE (2001) Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica 111:43–58

    Article  CAS  Google Scholar 

  23. Brunelli JP, Thorgaard GH (2004) A new Y-chromosome-specific marker for Pacific salmon. Trans Am Fish Soc 133:1247–1253

    Article  CAS  Google Scholar 

  24. Devlin RH, McNeil BK, Groves DD, Donaldson EM (1991) Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 48:1606–1612

    Article  CAS  Google Scholar 

  25. Zhang Q, Nakayama I, Fujiwara A, Kobayashi T, Oohara I, Masaoka T, Kitamura S, Devlin RH (2001) Sex identification by male-specific growth hormone pseudogene (GH-Psi) in Oncorhynchus masou complex and a related hybrid. Genetica 111:111–118

    Article  CAS  Google Scholar 

  26. Chowen TR, Nagler JJ (2005) Lack of sex specificity for growth hormone pseudogene in fall-run Chinook salmon from the Columbia River. Trans Am Fish Soc 134:279–282

    Article  CAS  Google Scholar 

  27. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  28. Nakayama I, Biagi CA, Koide N, Devlin RH (1999) Identification of a sex-linked GH pseudogene in one of two species of Japanese salmon (Oncorhynchus masou and O. rhodurus). Aquaculture 173:65–72

    Article  CAS  Google Scholar 

  29. Metcalf VJ, Gemmell NJ (2006) Sexual genotype markers absent from small numbers of male New Zealand Oncorhynchus tshawytscha. J Fish Biol 68:136–143

    Article  CAS  Google Scholar 

  30. Nagler JJ, Bouma J, Thorgaard GH, Dauble DD (2001) High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia River. Environ Health Perspect 109:67–69

    Article  CAS  Google Scholar 

  31. Chowen TR, Nagler JJ (2004) Temporal and spatial occurrence of female Chinook salmon carrying a male-specific genetic marker in the Columbia River watershed. Environ Biol Fish 69:427–432

    Article  Google Scholar 

  32. Williamson KS, May B (2002) Incidence of phenotypic female Chinook salmon positive for the male Y-chromosome-specific marker OtY1 in the Central Valley, California. J Aquat Anim Health 14:176–183

    Article  Google Scholar 

  33. Penman D, Piferrer F (2008) Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:14–32

    Article  Google Scholar 

  34. Piferrer F, Donaldson EM (1993) Sex control in Pacific salmon. In: Muir JF, Roberts RJ (eds) Recent advances in aquaculture, vol IV. Blackwell, Oxford, pp 69–77

    Google Scholar 

  35. Piferrer F, Baker IJ, Donaldson EM (1993) Effects of natural, synthetic, aromatizable, and nonaromatizable androgens in inducing male sex differentiation in genotypic female Chinook salmon (Oncorhynchus tshawytscha). Gen Comp Endocrinol 91:59–65

    Article  CAS  Google Scholar 

  36. Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281

    Article  CAS  Google Scholar 

  37. Piferrer F, Guiguen Y (2008) Fish gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rev Fish Sci 16:33–53

    Article  Google Scholar 

  38. Azuma T, Takeda K, Doi T, Muto K, Akutsu M, Sawada M, Adachi S (2004) The influence of temperature on sex determination in sockeye salmon Oncorhynchus nerka. Aquaculture 234:461–473

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. L.-Y. Liao, and Drs. K. Takata, H. Onozato, E. Yamaha, and H. Ohta for providing samples. We are grateful to Drs. R. Burghardt (Texas A&M University, USA), F. Juanes (University of Massachusetts) and anonymous reviewers for their valuable comments. The work was supported by funding from the Shei-Pa National Park, Ministry of the Interior, Taiwan, to J.-C. Gwo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chywan Gwo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, TH., Gwo, JC. A PCR-based method for sex identification of critically endangered Formosa landlocked salmon. Fish Sci 76, 613–618 (2010). https://doi.org/10.1007/s12562-010-0255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-010-0255-1

Keywords

Navigation