Skip to main content
Log in

Molecular cloning and tissue transcriptional analysis of a novel gene encoding proteasome activator PA28-α from common carp (Cyprinus carpio L.)

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

To identify the homolog of the PA28-α subunit, a leukocyte cDNA library of common carp was screened and the full-length cDNA sequence of the PSME1 gene coding for the PA28-α was obtained. It encompasses 1097 nucleotides (nt), with an open reading frame encoding 249 amino acids. The deduced protein sequence exhibits identities of 92, 78, 78, 77, 75, 56, 54, 53 and 54% with zebrafish, Atlantic salmon, northern pike, rainbow trout, rainbow smelt, mouse, pig, cattle and human PA28-α subunits, respectively. Multiple sequence alignment of the PA28-α protein of common carp and other known PA28 subunits indicates that it contains a PA28-α subunit-specific insert corresponding to the KEKE motif of the known PA28-α (Region B), a characteristic proline-rich motif (Region A), a potential protein kinase C recognition site (Region D), a conserved activation loop (Region C), and a highly homologous C-terminal region (Region E). Phylogenetic analysis reveals that the PA28-γ subunit is related to the presumed ancestor of the PA28-α and PA28-β subunits. In addition, the genomic DNA obtained by PCR is composed of eleven exons and ten introns with 3583 nt, typical of the PA28-α gene organization. Compared with the other known PA28-α genomic DNA, in spite of structural conservation through evolution, the fish PA28-α genes showed a much greater sequence divergence than their counterparts among mammals. Tissue transcriptional analysis of carp PA28-α indicated that it was visibly enhanced in tissues associated with immunity (gill, spleen, kidney and liver), and weakly transcribed in muscle, brain and heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    Article  PubMed  CAS  Google Scholar 

  2. Sijts A, Sun Y, Janek K, Kral S, Paschen A, Schadendorf D, Kloetzel PM (2002) The role of the proteasome activator PA28 in MHC class I antigen processing. Mol Immunol 39:165–169

    Article  PubMed  CAS  Google Scholar 

  3. Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187

    Article  PubMed  CAS  Google Scholar 

  4. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  PubMed  CAS  Google Scholar 

  5. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  PubMed  CAS  Google Scholar 

  6. Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanović S, Schild H, Rammensee HG (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262

    Article  PubMed  CAS  Google Scholar 

  7. van Hall T, Sijts A, Camps M, Offringa R, Melif C, Kloetzel PM, Ossendorp F (2000) Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J Exp Med 192:483–494

    Article  PubMed  Google Scholar 

  8. Strehl B, Seifert U, Krüger E, Heink S, Kuckelkorn U, Kloetzel PM (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30

    Article  PubMed  CAS  Google Scholar 

  9. Murray BW, Sültmann H, Klein J (2000) Identification and linkage of the proteasome activator complex PA28 subunit genes in zebrafish. Scand J Immunol 51:571–576

    Article  PubMed  CAS  Google Scholar 

  10. Kim DH, Lee SM, Hong BY, Kim YT, Choi TJ (2003) Cloning and sequence analysis of cDNA for the proteasome activator PA28-β subunit of flounder (Paralichthys olivaceus). Mol Immunol 40:611–616

    Article  PubMed  CAS  Google Scholar 

  11. Liu G, Zheng W, Chen X (2007) Molecular cloning of proteasome activator PA28-beta subunit of large yellow croaker (Pseudosciana crocea) and its coordinated up-regulation with MHC class I alpha-chain and beta(2)-microglobulin in poly I:C-treated fish. Mol Immunol 44:1190–1197

    Article  PubMed  CAS  Google Scholar 

  12. Kohda K, Ishibashi T, Shimbara N, Tanaka K, Matsuda Y, Kasahara M (1998) Characterization of the mouse PA28 activator complex gene family: complete organizations of the three member genes and a physical map of the approximately 150-kb region containing the alpha- and beta-subunit genes. J Immunol 160:4923–4935

    PubMed  CAS  Google Scholar 

  13. Wang YF, Yu M, te Pas MF, Yerle M, Liu B, Fan B, Xiong TA, Li K (2004) Sequence characterization, polymorphism and chromosomal localizations of the porcine PSME1 and PSME2 genes. Anim Genet 35:361–366

    Article  PubMed  CAS  Google Scholar 

  14. Mott JD, Pramanik BC, Moomaw CR, Afendis SJ, DeMartino GN, Slaughter CA (1994) PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem 269:31466–31471

    PubMed  CAS  Google Scholar 

  15. Realini C, Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1994) Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease. J Biol Chem 269:20727–20732

    PubMed  CAS  Google Scholar 

  16. Ahn JY, Tanahashi N, Akiyama K, Hisamatsu H, Noda C, Tanaka K, Chung CH, Shimbara N, Willy PJ, Mott JD, Slaughter CA, DeMartino GN (1995) Primary structures of two homologous subunits of PA28, a g-interferon-inducible protein activator of the 20S proteasome. FEBS Lett 366:37–42

    Article  PubMed  CAS  Google Scholar 

  17. Nikaido T, Shimada K, Shibata M, Hata M, Sakamoto M, Takasaki Y, Sato C, Takahashi T, Nishida Y (1990) Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol 79:209–214

    Article  PubMed  CAS  Google Scholar 

  18. Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472

    Article  PubMed  CAS  Google Scholar 

  19. Jackson IJ (1991) A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 19:3795–3798

    Article  PubMed  CAS  Google Scholar 

  20. Nylund A, Devold M, Plarre H, Isdal E, Asrseth M (2003) Emergence and maintenance of infectious salmon anaemia virus (ISAV) in Europe: a new hypothesis. Dis Aquat Org 56:11–24

    Article  PubMed  CAS  Google Scholar 

  21. Skall HF, Olesen NJ, Mellergaard S (2005) Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming—a review. J Fish Dis 28:509–529

    Article  PubMed  CAS  Google Scholar 

  22. Wang XW, Ao JQ, Li QG, Chen XH (2006) Quantitative detection of a marine fish iridovirus isolated from large yellow croaker, Pseudosciaena crocea, using a molecular beacon. J Virol Methods 133:76–81

    Article  PubMed  CAS  Google Scholar 

  23. Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem J 345:1–15

    Article  PubMed  CAS  Google Scholar 

  24. Wahle E, Rüegsegger U (1999) 3′-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23:277–295

    PubMed  CAS  Google Scholar 

  25. Realini C, Rogers SM, Rechsteiner M (1994) KEKE motifs: proposed roles in protein–protein association and presentation of peptides by Mhc class I receptors. FEBS Lett 348:109–113

    Google Scholar 

  26. Realini C, Jensen CC, Zhang Z, Johnston SC, Knowlton JR, Hill CP, Rechsteiner M (1997) Characterization of recombinant REG-alpha, REG-beta, and REG-gamma proteasome activators. J Biol Chem 272:25483–25492

    Article  PubMed  CAS  Google Scholar 

  27. Gonciarz-Swiatek M, Rechsteiner M (2006) Proteasomes and antigen presentation: evidence that a KEKE motif does not promote presentation of the class I epitope SIINFEKL. Mol Immunol 43:1993–2001

    Article  PubMed  CAS  Google Scholar 

  28. McCusker D, Wilson M, Trowsdale J (1999) Organization of the genes encoding the human proteasome activators PA28α and PA28β. Immunogenetics 49:438–445

    Article  PubMed  CAS  Google Scholar 

  29. Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP (1997) Structure of the proteasome activator REGalpha (PA28alpha). Nature 390:639–643

    Article  PubMed  CAS  Google Scholar 

  30. Li N, Lerea KM, Etlinger JD (1996) Phosphorylation of the proteasome activator PA28 is required for proteasome activation. Biochem Biophys Res Commun 225:855–860

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Z, Clawson A, Realini C, Jensen CC, Knowlton JR, Hill CP, Rechsteiner M (1998) Identification of an activation region in the proteasome activator REGalpha. Proc Natl Acad Sci USA 95:2807–2811

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Clawson A, Rechsteiner M (1998) The proteasome activator 11S regulator or PA28. Contribution by both alpha and beta subunits to proteasome activation. J Biol Chem 273:30660–30668

    Article  PubMed  CAS  Google Scholar 

  33. Song X, Von Kampen J, Slaughter CA, DeMartino GN (1997) Relative functions of the alpha and beta subunits of the proteasome activator, PA28. J Biol Chem 272:27994–28000

    Article  PubMed  CAS  Google Scholar 

  34. Khan S, van den Broek M, Schwarz K, de Giuli R, Diener PA, Groettrup M (2001) Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J Immunol 167:6859–6868

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Su Zhong of the Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, China, for reviewing the manuscript. This work was supported by grants from the National Natural Science Foundation of China (30200210, 30571433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Y., Lu, Q., Li, L. et al. Molecular cloning and tissue transcriptional analysis of a novel gene encoding proteasome activator PA28-α from common carp (Cyprinus carpio L.). Fish Sci 76, 511–519 (2010). https://doi.org/10.1007/s12562-010-0226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-010-0226-6

Keywords

Navigation