Fisheries Science

, Volume 76, Issue 1, pp 93–99 | Cite as

Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora)

  • Ryota Suwa
  • Masako Nakamura
  • Masaya Morita
  • Kazuaki Shimada
  • Akira Iguchi
  • Kazuhiko Sakai
  • Atsushi Suzuki
Original Article Biology

Abstract

Ocean acidification, caused by increased atmospheric carbon dioxide (CO2) concentrations, is currently an important environmental problem. It is therefore necessary to investigate the effects of ocean acidification on all life stages of a wide range of marine organisms. However, few studies have examined the effects of increased CO2 on early life stages of organisms, including corals. Using a range of pH values (pH 7.3, 7.6, and 8.0) in manipulative duplicate aquarium experiments, we have evaluated the effects of increased CO2 on early life stages (larval and polyp stages) of Acropora spp. with the aim of estimating CO2 tolerance thresholds at these stages. Larval survival rates did not differ significantly between the reduced pH and control conditions. In contrast, polyp growth and algal infection rates were significantly decreased at reduced pH levels compared to control conditions. These results suggest that future ocean acidification may lead to reduced primary polyp growth and delayed establishment of symbiosis. Stress exposure experiments using longer experimental time scales and lower levels of CO2 concentrations than those used in this study are needed to establish the threshold of CO2 emissions required to sustain coral reef ecosystems.

Keywords

Carbon dioxide Coral Early life stages Ocean acidification 

References

  1. 1.
    Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  2. 2.
    Caldiera K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  3. 3.
    Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear RJ, Monfray P, Mouchet A, Najjar R, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefPubMedGoogle Scholar
  4. 4.
    Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefPubMedGoogle Scholar
  5. 5.
    Marubini F, Christine AE, Ferrier-Page’s AE, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499CrossRefGoogle Scholar
  6. 6.
    Bijma J, Honisch B, Zeebe RE (2002) Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by Broecker WS and Clark E. Geochem Geophys Geosyst 3:1064. doi:10.1029/2002GC000388 CrossRefGoogle Scholar
  7. 7.
    Erez J (2003) The sources of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove PM, De Yoreo JJ, Weiner S (eds) Reviews in minerology and geochemistry, vol 54: biomineralization. Minerological Society of America, Washington D.C., pp 115–149Google Scholar
  8. 8.
    Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132CrossRefGoogle Scholar
  9. 9.
    Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446CrossRefPubMedGoogle Scholar
  10. 10.
    Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  11. 11.
    Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05. Royal Society, LondonGoogle Scholar
  12. 12.
    Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284CrossRefGoogle Scholar
  13. 13.
    Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi:10.3354/meps07768 CrossRefGoogle Scholar
  14. 14.
    Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Carbon emissions and acidification. Science 321:51–52CrossRefPubMedGoogle Scholar
  15. 15.
    Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652CrossRefPubMedGoogle Scholar
  16. 16.
    Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A (2009) Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote. doi:10.1017/S0967199409990177
  17. 17.
    Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169CrossRefGoogle Scholar
  18. 18.
    Dopont S, Harenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi:10.3354/meps07800 CrossRefGoogle Scholar
  19. 19.
    Kurihara H, Ishimatsu A (2008) Effects of high-CO2 seawater on the copepod Acartia tsuensi through all life stages and subsequent generations. Mar Pollut Bull 56:1086–1090CrossRefPubMedGoogle Scholar
  20. 20.
    Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biol 1:91–98CrossRefGoogle Scholar
  21. 21.
    Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233CrossRefGoogle Scholar
  22. 22.
    Ellis R, Bersey J, Rundle SD, Hall-Spencer JM, Spicer JI (2009) Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48. doi:10.3354/ab00118 CrossRefGoogle Scholar
  23. 23.
    Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. J Mar Sci 65:414–432Google Scholar
  24. 24.
    Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop. NSF, NOAA, and the US Geological Survey, St Petersburg, FLGoogle Scholar
  25. 25.
    Albright R, Mason B, Langdon L (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27:485–490CrossRefGoogle Scholar
  26. 26.
    Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  27. 27.
    Wallace CC (1999) Staghorn corals of the world: a revision of the genus Acropora. CSIRO Publ, CollingwoodGoogle Scholar
  28. 28.
    Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293Google Scholar
  29. 29.
    Morita M, Nishikawa A, Nakajima A, Iguchi A, Sakai K, Takemura A, Okuno M (2006) Eggs regulate sperm flagellar motility initiation, chemotaxis, and inhibition in the coral, Acropora digitifera, A. gemmifera, and A. tenuis. J Exp Biol 209:4574–4579CrossRefPubMedGoogle Scholar
  30. 30.
    Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  31. 31.
    Suwa R, Hirose M, Hidaka M (2008) Seasonal fluctuation in zooxanthella composition and photophysiology in the corals Pavona divaricata and P. decussata in Okinawa. Mar Ecol Prog Ser 361:129–137CrossRefGoogle Scholar
  32. 32.
    Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3. North Pacific Marine Science Organization (PICES), OttawaGoogle Scholar
  33. 33.
    Fujimura H, Oomori T, Maehira T, Miyahira K (2001) Change of coral carbon metabolism influenced by coral bleaching. Galaxea 3:41–50Google Scholar
  34. 34.
    Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations, ORNL/ CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  35. 35.
    Iwao K, Fujisawa T, Hatta M (2002) A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 21:127–129Google Scholar
  36. 36.
    Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T (2005) Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem Biophys Res Commun 336:793–798CrossRefPubMedGoogle Scholar
  37. 37.
    Hirose M, Yamamoto H, Nonaka M (2008) Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp. Coral Reefs 27:247–254CrossRefGoogle Scholar
  38. 38.
    Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidae) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137. doi:10.1007/s00227-009-1155-8 CrossRefGoogle Scholar
  39. 39.
    Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sediment Geol 99:259–280CrossRefGoogle Scholar
  40. 40.
    Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extra- versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807Google Scholar
  41. 41.
    Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovinciallis. Mar Ecol Prog Ser 293:109–118CrossRefGoogle Scholar
  42. 42.
    Guppy M, Withers PC (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40CrossRefPubMedGoogle Scholar
  43. 43.
    Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar Ecol Prog Ser 256:87–97CrossRefGoogle Scholar
  44. 44.
    Nishikawa A, Sakai K (2005) Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool Sci 22:391–399CrossRefPubMedGoogle Scholar
  45. 45.
    Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 61:225–244CrossRefGoogle Scholar
  46. 46.
    Babcock R, Mundy C (1996) Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J Exp Mar Biol Ecol 206:179–201CrossRefGoogle Scholar
  47. 47.
    Shirayama T, Thornton H (2005) Effects of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110:1–7CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2009

Authors and Affiliations

  • Ryota Suwa
    • 1
    • 4
  • Masako Nakamura
    • 1
  • Masaya Morita
    • 1
  • Kazuaki Shimada
    • 2
  • Akira Iguchi
    • 1
  • Kazuhiko Sakai
    • 1
  • Atsushi Suzuki
    • 3
  1. 1.Sesoko Station, Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
  2. 2.Ocean Research InstituteUniversity of TokyoTokyoJapan
  3. 3.Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Seto Marine Biological Laboratory, Field Science Education and Research CenterKyoto UniversityWakayamaJapan

Personalised recommendations