Skip to main content
Log in

Molecular cloning and expression analysis of the BPI/LBP cDNA and its gene from ayu Plecoglossus altivelis altivelis

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Bactericidal/permeability-increasing protein and lipopolysaccharide-binding protein (BPI/LBP) are important components of the mammalian innate defense system against Gram-negative bacterial infections. Ayu Plecoglossus altivelis altivelis BPI/LBP cDNA and its gene were cloned. The open reading frame of ayu BPI/LBP encoded a protein of 471 amino acids that contains a signal peptide and the BPI/LBP/ cholesteryl ester transfer protein-specific sequence motifs, BPI1 and BPI2. The basic amino acid residues in the LPS-binding domains of human Homo sapiens BPI and LBP and bony fishes BPI/LBP were well conserved in ayu BPI/LBP. The ayu BPI/LBP gene is composed of 15 exons and 14 introns. Ayu BPI/LBP mRNA was predominantly expressed in gill, intestine, kidney, spleen, and skin. At 4 and 7 days after the immersion challenge of Flavobacterium psychrophilum, the ayu BPI/LBP mRNA expression in the whole blood increased about fivefold in comparison with control (no challenge). Because ayu BPI/LBP mRNA increased before ayu began to die following exposure to F. psychrophilum, ayu BPI/LBP gene transcripts might be useful as a marker of the response to infectious Gram-negative bacteria or as a health status indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffman JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  Google Scholar 

  2. Magnadóttir B (2006) Innate immunity of fish. Fish Shellfish Immunol 20:137–151

    Article  PubMed  Google Scholar 

  3. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:75–80

    Article  Google Scholar 

  4. Mushegian A, Medzhitov R (2001) Evolutionary perspective on innate immune recognition. J Cell Biol 155:705–710

    Article  PubMed  CAS  Google Scholar 

  5. Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    PubMed  CAS  Google Scholar 

  6. Weiss J (2003) Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria. Biochem Soc Trans 31:785–790

    Article  PubMed  CAS  Google Scholar 

  7. Bingle CD, Craven CJ (2004) Meet the relatives: a family of BPI- LBP-related proteins. Trends Immunol 25:53–55

    Article  PubMed  CAS  Google Scholar 

  8. Gray PW, Corcorran AE, Eddy RLJ, Byers MG, Shows TB (1993) The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20. Genomics 15:188–190

    Article  PubMed  CAS  Google Scholar 

  9. Hubacek JA, Buchler C, Aslanidis C, Schmitz G (1997) The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved. Biochem Biophys Res Commun 236:427–430

    Article  PubMed  CAS  Google Scholar 

  10. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

    Article  PubMed  CAS  Google Scholar 

  11. Iovine NM, Elsbach P, Weiss J (1997) An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains. Proc Natl Acad Sci USA 94:10973–10978

    Article  PubMed  CAS  Google Scholar 

  12. Beamer LJ, Carroll SF, Eisenberg D (1998) The BPI/LBP family of proteins: a structural analysis of conserved regions. Protein Sci 7:906–914

    Article  PubMed  CAS  Google Scholar 

  13. Tobias PS, Mathison JC, Ulevitch RJ (1988) A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis. J Biol Chem 263:13479–13481

    PubMed  CAS  Google Scholar 

  14. Tobias PS, Soldau K, Iovine NM, Elsbach P, Weiss J (1997) Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem 272:18682–18685

    Article  PubMed  CAS  Google Scholar 

  15. Weiss J, Franson RC, Beckerdite S, Schmeidler K, Elsbach P (1975) Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J Clin Invest 55:33–42

    Article  PubMed  CAS  Google Scholar 

  16. Weiss J, Elsbach P, Olsson I, Odeberg H (1978) Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem 253:2664–2672

    PubMed  CAS  Google Scholar 

  17. Mannion BA, Weiss J, Elsbach P (1990) Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli. J Clin Invest 85:853–860

    Article  PubMed  CAS  Google Scholar 

  18. Tobias PS, Soldau K, Ulevitch RJ (1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med 164:777–793

    Article  PubMed  CAS  Google Scholar 

  19. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

  20. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  21. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    PubMed  CAS  Google Scholar 

  22. Gray PW, Flaggs G, Leong SR, Gumina RJ, Weiss J, Ooi CE, Elsbach P (1989) Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J Biol Chem 264:9505–9509

    PubMed  CAS  Google Scholar 

  23. Leong SR, Camerato T (1990) Nucleotide sequence of the bovine bactericidal permeability increasing protein (BPI). Nucleic Acids Res 18:3052

    Article  PubMed  CAS  Google Scholar 

  24. Zarember K, Elsbach P, Shin-Kim K, Weiss J (1997) p15 s (15-kD antimicrobial proteins) are stored in the secondary granules of rabbit granulocytes: implications for antibacterial synergy with the bactericidal/permeability-increasing protein in inflammatory fluids. Blood 89:672–679

    PubMed  CAS  Google Scholar 

  25. Gallay P, Carrel S, Glauser MP, Barras C, Ulevitch RJ, Tobias PS, Baumgartner JD, Heumann D (1993) Purification and characterization of murine lipopolysaccharide-binding protein. Infect Immun 61:378–383

    PubMed  CAS  Google Scholar 

  26. Lengacher S, Jongeneel CV, Le Roy D, Lee JD, Kravchenko V, Ulevitch RJ, Glauser MP, Heumann D (1995) Reactivity of murine and human recombinant LPS-binding protein (LBP) within LPS and gram negative bacteria. J Inflamm 47:165–172

    PubMed  CAS  Google Scholar 

  27. Su GL, Freeswick PD, Geller DA, Wang Q, Shapiro RA, Wan YH, Billiar TR, Tweardy DJ, Simmons RL, Wang SC (1994) Molecular cloning, characterization, and tissue distribution of rat lipopolysaccharide binding protein. Evidence for extrahepatic expression. J Immunol 153:743–752

    PubMed  CAS  Google Scholar 

  28. Inagawa H, Honda T, Kohchi C, Nishizawa T, Yoshiura Y, Nakanishi T, Yokomizo Y, Soma G (2002) Cloning and characterization of the homolog of mammalian lipopolysaccharide-binding protein and bactericidal permeability-increasing protein in rainbow trout Oncorhynchus mykiss. J Immunol 168:5638–5644

    PubMed  CAS  Google Scholar 

  29. Kono T, Sakai M (2003) Molecular cloning of a novel bactericidal permeability-increasing protein/lipopolysaccharide-binding protein (BPI/LBP) from common carp Cyprinus carpio L. and its expression. Mol Immunol 40:269–278

    Article  PubMed  CAS  Google Scholar 

  30. Stenvik J, Solstad T, Strand C, Leiros I, Jorgensen T (2004) Cloning and analyses of a BPI/LBP cDNA of the Atlantic cod (Gadus morhua L.). Dev Comp Immunol 28:307–323

    Article  PubMed  CAS  Google Scholar 

  31. Xu P, Bao B, He Q, Peatman E, He C, Liu Z (2005) Characterization and expression analysis of bactericidal permeability-increasing protein (BPI) antimicrobial peptide gene from channel catfish Ictalurus punctatus. Dev Comp Immunol 29:865–878

    Article  PubMed  CAS  Google Scholar 

  32. Huang Y, Lou H, Wu X, Chen Y (2008) Characterization of the BPI-like gene from a subtracted cDNA library of large yellow croaker (Pseudosciaena crocea) and induced expression by formalin-inactivated Vibrio alginolyticus and Nocardia seriolae vaccine challenges. Fish Shellfish Immunol 25:740–750

    Article  PubMed  CAS  Google Scholar 

  33. Sako H, Kusuda R (1978) Chemotherapeutic studies on trimethoprim against vibriosis of pond-cultured Ayu-I. Microbiological evaluation of trimethoprim and sulfonamides on the causative agent Vibrio anguillarum (in Japanese with English abstract). Fish Pathol 13:91–96

    CAS  Google Scholar 

  34. Muroga K, Egusa S (1988) Vibriosis of ayu: a review. J Fac Appl Biol Sci Hiroshima Univ 27:1–17

    Google Scholar 

  35. Wakabayashi H, Toyama T, Iida T (1994) A study on serotyping of Cytophaga psychrophila isolated from fishes in Japan. Fish Pathol 29:101–104

    Google Scholar 

  36. Iida Y, Mizokami A (1996) Outbreaks of coldwater disease in wild ayu and pale chub. Fish Pathol 31:157–164

    Google Scholar 

  37. Wakabayashi H, Sawada K, Ninomiya K, Nishimori E (1996) Bacterial hemorrhagic ascites of ayu caused by Pseudomonas sp. (in Japanese with English abstract). Fish Pathol 31:239–240

    Google Scholar 

  38. Nishimori E, Kita-Tsukamoto K, Wakabayashi H (2000) Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 50:83–89

    PubMed  CAS  Google Scholar 

  39. Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M (2005) Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 12:266–277

    Article  PubMed  Google Scholar 

  40. Whyte SK (2007) The innate immune response of finfish—a review of current knowledge. Fish Shellfish Immunol 23:1127–1151

    PubMed  CAS  Google Scholar 

  41. Altschul SF, Gish W, Miller W, Myers EW, Lipman EW (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  42. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  43. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  44. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260

    Article  PubMed  CAS  Google Scholar 

  45. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  46. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  47. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  48. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  49. Beamer LJ, Carroll SF, Eisenberg D (1999) The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions. Biochem Pharmacol 57:225–229

    Article  PubMed  CAS  Google Scholar 

  50. Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW (2005) Endotoxin recognition: in fish or not in fish? FEBS Lett 579:6519–6528

    Article  PubMed  CAS  Google Scholar 

  51. Bird S, Zou J, Savan R, Kono T, Sakai M, Woo J, Secombes C (2005) Characterisation and expression analysis of an interleukin-6 homologue in the Japanese pufferfish, Fugu rubripes. Dev Comp Immunol 29:775–789

    Article  PubMed  CAS  Google Scholar 

  52. Nam BH, Byon JY, Kim YO, Park EM, Cho YC, Cheong JH (2007) Molecular cloning and characterisation of the flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol 23:231–236

    Article  PubMed  CAS  Google Scholar 

  53. Solstad T, Stenvik J, Jorgensen T (2007) mRNA expression patterns of the BPI/LBP molecule in the Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 23:260–271

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuma Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Izumi, S., Tanaka, H. et al. Molecular cloning and expression analysis of the BPI/LBP cDNA and its gene from ayu Plecoglossus altivelis altivelis . Fish Sci 75, 673–681 (2009). https://doi.org/10.1007/s12562-009-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-009-0072-6

Keywords

Navigation