Skip to main content
Log in

Expressed sequence tag analysis of phyllosomas and hemocytes of Japanese spiny lobster Panulirus japonicus

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Two complementary DNA (cDNA) libraries were constructed from phyllosomas and hemocytes of adult Japanese spiny lobster Panulirus japonicus and a total of 2,673 expressed sequence tags (ESTs) were obtained. After assembly and clustering, 450 and 458 unique sequences were found from the phyllosoma and hemocyte cDNA libraries, respectively. Of these, 114 and 220 ESTs showed significant homologies with known genes in the National Centre for Biotechnology Information (NCBI) database. The remaining sequences were of unknown function. Immune-related genes found in this study include lectin, proteinase inhibitor, prophenoloxidase, heat-shock protein, antimicrobial peptide, and a few putative defense-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. George RW, Holthuis LB (1965) A revision of the Indo-West Pacific spiny lobsters of the Panulirus japonicus group. Zool Verh Leiden 72:3–36

    Google Scholar 

  2. Yamakawa T (1997) Stock assessment and fisheries management of the Japanese spiny lobster Panulirus japonicus. Bull Fish Res Inst Mie 7:1–96

    Google Scholar 

  3. Chow S, Suzuki N, Imai H, Yoshimura T (2006) Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Mar Biotechnol (NY) 8:260–267

    Article  CAS  Google Scholar 

  4. Nonaka M, Fushimi H, Yamakawa T (2000) The spiny lobster fishery in Japan and restocking. In: Phillips BF, Kittaka J (eds) Spiny lobsters: fisheries and culture. Blackwell Scientific, Oxford, pp 221–242

    Chapter  Google Scholar 

  5. Kittaka J, Kimura K (1989) Culture of the Japanese spiny lobster Panulirus japonicus from egg to juvenile stage. Nippon Suisan Gakkaishi 55:963–970

    Google Scholar 

  6. Hirokazu M, Taisuke T (2005) New tank design for larval culture of Japanese spiny lobster, Panilirus japonicus. NZ J Mar Freshwater Res 39:279–285

    Google Scholar 

  7. Shields JD, Behringer DC Jr (2004) A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys. Dis Aquat Organ 59:109–118

    Article  PubMed  Google Scholar 

  8. Matsuda H, Takenouchi T (2007) Development of technology for larval Panulirus japonicus culture in Japan: a review. Bull Fish Res Agen 20:77–84

    Google Scholar 

  9. Abraham TJ, Rahman MK, Joseph MTL (1996) Bacterial disease in cultured spiny lobster, Panulirus homarus (Linnaeus). J Aquac Trop 11:187–192

    Google Scholar 

  10. Evans LH, Brock JA (1994) Diseases of spiny lobster. In: Phillips BF, Cobb JS, Kittaka J (eds) Spiny lobster management. Blackwell, Oxford, pp 461–471

    Google Scholar 

  11. Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH et al (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377:3–174

    PubMed  CAS  Google Scholar 

  12. Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T (2002) Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 13:69–83

    Article  PubMed  CAS  Google Scholar 

  13. Tassanakajon A, Klinbunga S, Paunglarp N, Rimphanitchayakit V, Udomkit A, Jitrapakdee S et al (2006) Penaeus monodon gene discovery project: the generation of an EST collection and establishment of a database. Gene 384:104–112

    Article  PubMed  CAS  Google Scholar 

  14. Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol 25:565–577

    Article  PubMed  CAS  Google Scholar 

  15. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  16. Adams MD, Kerlavage AR, Fields C, Venter JC (1993) 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat Genet 4:256–267

    Article  PubMed  CAS  Google Scholar 

  17. Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH et al (2007) The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 8:R216

    Article  PubMed  CAS  Google Scholar 

  18. Stewart MJ, Denell R (1993) Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Mol Cell Biol 13:2524–2535

    PubMed  CAS  Google Scholar 

  19. Corona M, Estrada E, Zurita M (1999) Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera. J Exp Mar Biol 202:929–938

    CAS  Google Scholar 

  20. Uno T, Nakasuji A, Shimoda M, Aizono Y (2004) Expression of cytochrome c oxidase subunit I gene in the brain at an early stage in the termination of pupal diapause in the sweet potato hornworm, Agrius convolvuli. J Insect Physiol 50:35–42

    Article  PubMed  CAS  Google Scholar 

  21. Tian H, Vinson SB, Coates CJ (2004) Differential gene expression between alate and dealate queens in the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Biochem Mol Biol 34:937–949

    Article  CAS  Google Scholar 

  22. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  23. Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  PubMed  CAS  Google Scholar 

  24. Jiravanichpaisal P, Puanglarp N, Petkon S, Donnuea S, Soderhall I, Soderhall K (2007) Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23:815–824

    Article  PubMed  CAS  Google Scholar 

  25. Kress H, Jarrin A, Thuroff E, Saunders R, Weise C, Schmidtam Busch M, Knapp E-W, Wedde M, Vilcinskas A (2004) A Kunitz type protease inhibitor related protein is synthesized in Drosophila prepupal salivary glands and released into the moulting fluid during pupation. Insect Biochem Mol Biol 34:855–869

    PubMed  CAS  Google Scholar 

  26. Kanost MR (1999) Serine proteinase inhibitors in arthropod immunity. Dev Comp Immunol 23:291–301

    Article  PubMed  CAS  Google Scholar 

  27. Gorman MJ, Andreeva OV, Paskewitz SM (2000) Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251:9–17

    Article  PubMed  CAS  Google Scholar 

  28. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Article  PubMed  CAS  Google Scholar 

  29. Supungul P, Tang S, Maneeruttanarungroj C, Rimphanitchayakit V, Hirono I, Aoki T et al (2008) Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 32:61–70

    Article  PubMed  CAS  Google Scholar 

  30. Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D et al (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56–66

    Article  PubMed  CAS  Google Scholar 

  31. Ewart K, Johnson S (2001) Lectin of the innate immune system and their relevance to fish health. J Mar Sci 58:380–385

    CAS  Google Scholar 

  32. East L, Isacke C (2002) The mannose receptor family. Biochem Biophys Acta 157:364–386

    Google Scholar 

  33. Christine L, Akira G, Malin L, Gawa B, Mitchell SD, Ulrich T (2007) A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 12:1255–1263

    Google Scholar 

  34. Luo T, Yang H, Li F, Zhang X, Xu X (2006) Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev Comp Immunol 30:607–617

    Article  PubMed  CAS  Google Scholar 

  35. Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464

    Article  PubMed  CAS  Google Scholar 

  36. Qiu Z, Macrae TH (2008) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 3:605–611

    Article  CAS  Google Scholar 

  37. Tungjitwitayakul J, Tatun N, Singtripop T, Sakurai S (2008) Characteristic expression of three heat shock-responsive genes during larval diapause in the bamboo borer Omphisa fuscidentalis. Zoolog Sci 3:321–333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Ministry of Agriculture, Forestry, and Fisheries of Japan and the Grants in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Hirono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisuttharachai, D., Yasuike, M., Aono, H. et al. Expressed sequence tag analysis of phyllosomas and hemocytes of Japanese spiny lobster Panulirus japonicus . Fish Sci 75, 195–206 (2009). https://doi.org/10.1007/s12562-008-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-008-0027-3

Keywords

Navigation