Skip to main content
Log in

Estimate Time-To-Infection (TTI) Vaccination Effect When TTI for Unvaccinated Group is Unknown

  • Original Paper
  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic has caused significant morbidity and mortality, as well as social and economic disruption worldwide in general and USA in particular. In order to reduce these effects, a global effort to develop effective vaccines against the COVID-19 virus has produced various options with the effectiveness assessed on the rate of infection between vaccinated and unvaccinated groups, which has been used for important policy decision-making on vaccination effectiveness ever since. However, the rate of infection is an over-simplified index in assessing the vaccination effectiveness overall, which should be strengthened to address the duration of protection with time-to-infection effect. The fundamental challenge in estimating the vaccination effect over time is that the time-to-infection for unvaccinated group is unknown due to nonexistent vaccination time. This paper is then aimed to fill this knowledge gap to propose a Weibull regression model. This model treats the nonexistent vaccination time for the unvaccinated group as nuisance parameters and estimates the vaccination effectiveness along with these nuisance parameters. The performance of the proposed approach and its properties are empirically investigated through a simulation study, and its applicability is illustrated using a real-data example from the Arizona State University COVID-19 serological prevalence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pamuk S, Özkan A, Polat B (2020) Epidemiology, pathogenesis, diagnosis and management of covid-19. Turk J Ear Nose Throat 30(1):1–9

    Article  Google Scholar 

  3. World Health Organization (2020) WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. World Health Organization, Geneva

    Google Scholar 

  4. Johns Hopkins University (2023) COVID-19 dashboard by the center for systems science and engineering (CSSE) at Johns Hopkins University. https://coronavirus.jhu.edu/map.html

  5. Branswell H, et al (2021) Comparing the covid-19 vaccines developed by Pfizer, Moderna, and Johnson & Johnson. Retrieved from comparing three Covid-19 vaccines: Pfizer, Moderna, J &J (statnews. com)

  6. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Marc GP, Moreira ED, Zerbini C et al (2020) Safety and efficacy of the bnt162b2 mRNA covid-19 vaccine. N Engl J Med 383(27):2603–2615

    Article  CAS  PubMed  Google Scholar 

  7. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB et al (2020) Efficacy and safety of the mRNA-1273 SARS-COV-2 vaccine. N Engl J Med 384(5):403–416

    Article  PubMed  Google Scholar 

  8. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B et al (2021) Safety and efficacy of single-dose ad26. cov2. s vaccine against covid-19. N Engl J Med 384(23):2187–2201

    Article  CAS  PubMed  Google Scholar 

  9. Lin D-Y, Zeng D, Gilbert PB (2021) Evaluating the long-term efficacy of coronavirus disease 2019 (covid-19) vaccines. Clin Infect Dis 73(10):1927–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C et al (2021) Safety and efficacy of the bnt162b2 mRNA covid-19 vaccine through 6 months. N Engl J Med 385(19):1761–1773

    Article  CAS  PubMed  Google Scholar 

  11. Lin D-Y, Gu Y, Wheeler B, Young H, Holloway S, Sunny S-K, Moore Z, Zeng D (2022) Effectiveness of covid-19 vaccines over a 9-month period in North Carolina. N Engl J Med 386(10):933–941

    Article  CAS  PubMed  Google Scholar 

  12. Gram MA, Emborg H-D, Schelde AB, Friis NU, Nielsen KF, Moustsen-Helms IR, Legarth R, Lam JUH, Chaine M, Malik AZ et al (2022) Vaccine effectiveness against sars-cov-2 infection or covid-19 hospitalization with the alpha, delta, or omicron sars-cov-2 variant: a nationwide Danish cohort study. PLoS Med 19(9):1003992

    Article  Google Scholar 

  13. Lin D-Y, Zeng D, Gu Y, Krause PR, Fleming TR (2022) Reliably assessing duration of protection for coronavirus disease 2019 vaccines. J Infect Dis 226(11):1863–1866

    Article  CAS  PubMed  Google Scholar 

  14. Horne EM, Hulme WJ, Keogh RH, Palmer TM, Williamson EJ, Parker EP, Green A, Walker V, Walker AJ, Curtis H et al (2022) Waning effectiveness of bnt162b2 and chadox1 covid-19 vaccines over six months since second dose: opensafely cohort study using linked electronic health records. BMJ 378:e071249

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nanduri S, Pilishvili T, Derado G, Soe MM, Dollard P, Wu H, Li Q, Bagchi S, Dubendris H, Link-Gelles R et al (2021) Effectiveness of pfizer-biontech and moderna vaccines in preventing sars-cov-2 infection among nursing home residents before and during widespread circulation of the sars-cov-2 b. 1.617. 2 (delta) variant-national healthcare safety network, march 1-august 1, 2021. Morb Mortal Wkly Rep 70(34):1163

    Article  CAS  Google Scholar 

  16. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, Frankland TB, Ogun OA, Zamparo JM, Gray S et al (2021) Effectiveness of mRNA bnt162b2 covid-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet 398(10309):1407–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, Brooks N, Smaja M, Mircus G, Pan K et al (2021) Impact and effectiveness of mRNA bnt162b2 vaccine against sars-cov-2 infections and covid-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 397(10287):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernal JL, Andrews N, Gower C, Robertson C, Stowe J, Tessier E, Simmons R, Cottrell S, Roberts R, O’Doherty M et al (2021) Effectiveness of the Pfizer-biontech and Oxford-astrazeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case–control study. BMJ 373:n1088

    Article  Google Scholar 

  19. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O’Connell A-M et al (2022) Covid-19 vaccine effectiveness against the omicron (b.1.1.529) variant. N Engl J Med 386(16):1532–1546

    Article  CAS  PubMed  Google Scholar 

  20. David CR (1972) Regression models and life tables (with discussion). J R Stat Soc 34(2):187–220

    Google Scholar 

  21. Hou C-W, Williams S, Taylor K, Boyle V, Bobbett B, Kouvetakis J, Nguyen K, McDonald A, Harris V, Nussle B et al (2023) Serological survey to estimate sars-cov-2 infection and antibody seroprevalence at a large public university: a cross-sectional study. BMJ Open 13(8):072627

    Article  Google Scholar 

  22. Hightower A, Orenstein WA, Martin S (1988) Recommendations for the use of Taylor series confidence intervals for estimates of vaccine efficacy. Bull World Health Organ 66(1):99

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsiatis AA (1981) A large sample study of cox’s regression model. Ann Stat 9(1):93–108

    Article  MathSciNet  Google Scholar 

  24. Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  MathSciNet  Google Scholar 

  25. Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data. Wiley, New York

    Google Scholar 

  26. Liu X (2012) Survival analysis: models and applications. Wiley, New York

    Book  Google Scholar 

  27. Tableman M, Kim JS (2003) Survival analysis using S: analysis of time-to-event data. CRC Press, New York

    Book  Google Scholar 

  28. Lawless JF (2011) Statistical models and methods for lifetime data. Wiley, New Jersey

    Google Scholar 

  29. Carroll KJ (2003) On the use and utility of the Weibull model in the analysis of survival data. Control Clin Trials 24(6):682–701

    Article  PubMed  Google Scholar 

  30. Prentice RL, Kalbfleisch JD (1979) Hazard rate models with covariates. Biometrics 35:25–39

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  31. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/

  32. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2):149–154

    Article  MathSciNet  Google Scholar 

  33. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  Google Scholar 

  34. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  35. Leemis LM (1987) Variate generation for accelerated life and proportional hazards models. Oper Res 35(6):892–894

    Article  Google Scholar 

  36. Bender R, Augustin T, Blettner M (2005) Generating survival times to simulate cox proportional hazards models. Stat Med 24(11):1713–1723

    Article  MathSciNet  PubMed  Google Scholar 

  37. Weinberg GA, Szilagyi PG (2010) Vaccine epidemiology: efficacy, effectiveness, and the translational research roadmap. J Infect Dis 201(11):1607–1610

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassu Mehari Beyene.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DG., Chung, Y. & Beyene, K.M. Estimate Time-To-Infection (TTI) Vaccination Effect When TTI for Unvaccinated Group is Unknown. Stat Biosci (2024). https://doi.org/10.1007/s12561-024-09417-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12561-024-09417-w

Keywords

Navigation