Skip to main content
Log in

Marginal Structural Illness-Death Models for Semi-competing Risks Data

  • Original Paper
  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

The three-state illness-death model has been established as a general approach for regression analysis of semi-competing risks data. For observational data the marginal structural models (MSM) are a useful tool, under the potential outcomes framework to define and estimate parameters with causal interpretations. In this paper we introduce a class of marginal structural illness-death models for the analysis of observational semi-competing risks data. We consider two specific such models, the Markov illness-death MSM and the frailty-based Markov illness-death MSM. For interpretation purposes, risk contrasts under the MSMs are defined. Inference under the illness-death MSM can be carried out using estimating equations with inverse probability weighting, while inference under the frailty-based illness-death MSM requires a weighted EM algorithm. We study the inference procedures under both MSMs using extensive simulations, and apply them to the analysis of mid-life alcohol exposure on late life cognitive impairment as well as mortality using the Honolulu-Asia Aging Study data set. The R codes developed in this work have been implemented in the R package semicmprskcoxmsm that is publicly available on CRAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvares D, Haneuse S, Lee C, Lee KH (2019) Semicomprisks: an R package for the analysis of independent and cluster-correlated semi-competing risks data. R J 11(1):376

    Article  Google Scholar 

  2. Andersen PK, Hansen LS, Keiding N (1991) Non-and semi-parametric estimation of transition probabilities from censored observation of a non-homogeneous Markov process. Scand J Stat 18:153–167

    Google Scholar 

  3. Breslow NE, Wellner JA (2007) Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. Scand J Stat 34(1):86–102

    Article  MathSciNet  Google Scholar 

  4. Chastang C, Byar D, Piantadosi S (1988) A quantitative study of the bias in estimating the treatment effect caused by omitting a balanced covariate in survival models. Stat Med 7(12):1243–1255

    Article  Google Scholar 

  5. Comment L, Mealli F, Haneuse S, Zigler C (2019) Survivor average causal effects for continuous time: a principal stratification approach to causal inference with semicompeting risks. arXiv preprint arXiv:1902.09304

  6. Donohue MC, Gamst AC, Thomas RG, Xu R, Beckett L, Petersen RC, Weiner MW, Aisen P (2011) The relative efficiency of time-to-threshold and rate of change in longitudinal data. Contemp Clin Trials 32(5):685–693

    Article  Google Scholar 

  7. Fine JP, Jiang H, Chappell R (2001) On semi-competing risks data. Biometrika 88(4):907–919

    Article  MathSciNet  Google Scholar 

  8. Fix E, Neyman J (1951) A simple stochastic model of recovery, relapse, death and loss of patients. Hum Biol 23(3):205–241

    Google Scholar 

  9. Gander W, Gautschi W (2000) Adaptive quadrature-revisited. BIT Numer Math 40(1):84–101

    Article  MathSciNet  Google Scholar 

  10. Gelber R, Launer LJ, White LR (2012) The Honolulu-Asia aging study: epidemiologic and neuropathologic research on cognitive impairment. Curr Alzheimer Res 9(6):664–672

    Article  Google Scholar 

  11. Geskus RB (2016) Data analysis with competing risks and intermediate states. CRC Press, Boca Raton

    Google Scholar 

  12. Havercroft W, Didelez V (2012) Simulating from marginal structural models with time-dependent confounding. Stat Med 31(30):4190–4206

    Article  MathSciNet  Google Scholar 

  13. Hernán MA, Robins JM (2021) Causal inference: what if. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  14. Hernán MA, Brumback B, Robins JM (2001) Marginal structural models to estimate the joint causal effect of nonrandomized treatments. J Am Stat Assoc 96(454):440–448

    Article  MathSciNet  Google Scholar 

  15. Huang Y-T (2021) Causal mediation of semicompeting risks. Biometrics 77(4):1143–1154

    Article  MathSciNet  Google Scholar 

  16. Jazić I, Lee S, Haneuse S (2020) Estimation and inference for semi-competing risks based on data from a nested case-control study. Stat Methods Med Res 29(11):3326–3339

    Article  MathSciNet  Google Scholar 

  17. Jiang F, Haneuse S (2015) Simulation of semicompeting risk survival data and estimation based on multistate frailty model. Harvard University Biostatistics Working Paper Series

  18. Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data. Wiley, New York

    Google Scholar 

  19. Kosorok MR (2008) Introduction to empirical processes and semiparametric inference. Springer, New York

    Book  Google Scholar 

  20. Lancaster T, Nickell S (1980) The analysis of re-employment probabilities for the unemployed. J R Stat Soc A 143(2):141–152

    Article  Google Scholar 

  21. Lauritzen SL, Richardson TS (2002) Chain graph models and their causal interpretations. J R Stat Soc B 64(3):321–348

    Article  MathSciNet  Google Scholar 

  22. Lee C, Gilsanz P, Haneuse S (2021) Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia. BMC Med Res Methodol 21(1):1–13

    Article  Google Scholar 

  23. Lee KH, Haneuse S, Schrag D, Dominici F (2015) Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis. J R Stat Soc C 64(2):253–273

    Article  MathSciNet  Google Scholar 

  24. Lehmann EL, Casella G (2006) Theory of point estimation. Springer, New York

    Google Scholar 

  25. Maples JJ, Murphy SA, Axinn WG (2002) Two-level proportional hazards models. Biometrics 58(4):754–763

    Article  MathSciNet  Google Scholar 

  26. McCaffrey DF, Ridgeway G, Morral AR (2004) Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods 9(4):403

    Article  Google Scholar 

  27. Meira-Machado L, Sestelo M (2019) Estimation in the progressive illness-death model: a nonexhaustive review. Biom J 61(2):245–263

    Article  MathSciNet  Google Scholar 

  28. Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Am Stat Assoc 95(450):449–465

    Article  MathSciNet  Google Scholar 

  29. Nevo D, Gorfine M (2020) Causal inference for semi-competing risks data. arXiv preprint arXiv:2010.04485

  30. Neyman JS (1923) On the application of probability theory to agricultural experiments. essay on principles. section 9. (translated and edited by dm dabrowska and tp speed, statistical science (1990), 5, 465–480). Ann Agric Sci 10:1–51

    Google Scholar 

  31. Nielsen GG, Gill RD, Andersen PK, Sørensen TI (1992) A counting process approach to maximum likelihood estimation in frailty models. Scand J Stat 19(1):25–43

    MathSciNet  Google Scholar 

  32. Pak D, Ning J, Kryscio RJ, Shen Y (2023) Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study. Lifetime Data Anal. https://doi.org/10.1007/s10985-023-09602-x

    Article  MathSciNet  Google Scholar 

  33. Rava D (2021) Survival analysis and causal inference: from marginal structural cox to additive hazards model and beyond. Ph.D. Thesis, University of California, San Diego

  34. Rice JR (1975) A metalgorithm for adaptive quadrature. J ACM (JACM) 22(1):61–82

    Article  MathSciNet  Google Scholar 

  35. Robins JM, Hernan MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11(5):550–560

    Article  Google Scholar 

  36. Rubin DB (2005) Causal inference using potential outcomes: design, modeling, decisions. J Am Stat Assoc 100(469):322–331

    Article  MathSciNet  Google Scholar 

  37. Tchetgen Tchetgen EJ, Robins J (2012) On parametrization, robustness and sensitivity analysis in a marginal structural cox proportional hazards model for point exposure. Stat Probab Lett 82(5):907–915

    Article  MathSciNet  Google Scholar 

  38. Tchetgen Tchetgen EJ, Fulcher IR, Shpitser I (2021) Auto-G-computation of causal effects on a network. J Am Stat Assoc 116(534):833–844

    Article  MathSciNet  Google Scholar 

  39. Vaida F (2005) Parameter convergence for EM and MM algorithms. Stat Sin 15:831–840

    MathSciNet  Google Scholar 

  40. Vaida F, Xu R (2000) Proportional hazards model with random effects. Stat Med 19(24):3309–3324

    Article  Google Scholar 

  41. Wang Y, Ying A, Xu R (2023) Doubly robust estimation under covariate-induced dependent left truncation. ArXiv: 2206.02296V2

  42. Wu CJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MathSciNet  Google Scholar 

  43. Xu J, Kalbfleisch JD, Tai B (2010) Statistical analysis of illness-death processes and semicompeting risks data. Biometrics 66(3):716–725

    Article  MathSciNet  Google Scholar 

  44. Xu R, Vaida F, Harrington DP (2009) Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models. Stat Sin 19(2):819

    MathSciNet  Google Scholar 

  45. Xu Y, Scharfstein D, Müller P, Daniels M (2022) A Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risks. Biostatistics 23(1):34–49

    Article  MathSciNet  Google Scholar 

  46. Yang S, Troendle J, Pak D, Leifer E (2022) Event-specific win ratios for inference with terminal and non-terminal events. Stat Med 47(1):1225–1241

    Article  MathSciNet  Google Scholar 

  47. Zhang Y (2022) Causal inference for competing risks and semi-competing risks data. Ph.D. Thesis, University of California, San Diego

  48. Zhang Y, Xu R (2021) cmprskcoxmsm: use IPW to estimate treatment effect under competing risks. R package version 0.2.1

Download references

Acknowledgements

This research was partially supported by NIH/NIA grant R03 AG062432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghui Xu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ying, A., Edland, S. et al. Marginal Structural Illness-Death Models for Semi-competing Risks Data. Stat Biosci (2024). https://doi.org/10.1007/s12561-023-09413-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12561-023-09413-6

Keywords

Navigation