Skip to main content
Log in

AI-Powered Bayesian Statistics in Biomedicine

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Statistics and artificial intelligence (AI) are distinct yet closely interconnected disciplines, each characterized by its own historical roots and methodological approaches. This paper explores their collaborative potential, seeking to answer a pivotal question: How can statistics and AI collaborate to extract valuable insights from complex data? Within this context, we present three compelling case studies that showcase the harmonious integration of statistics and AI for the analysis of high-resolution pathology images, an emerging type of medical image that provides rich cellular-level information and serves as the gold standard for cancer diagnosis. Furthermore, recent advancements in spatial transcriptomics, which typically yield paired digital pathology images from the same tissue sample, introduce a new dimension to pathology images. This evolving landscape extends the horizons of the proposed AI-statistics framework, holding a promise of propelling biomedical research into new territories and delivering breakthroughs in our understanding of complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ostasiewicz W (2014) The emergence of statistical science. Śląski Przegląd Statystyczny 18(12):75–82

    Google Scholar 

  2. Bruneau Q (2022) States and the masters of capital: sovereign lending, old and new. Columbia University Press, New York

    Book  Google Scholar 

  3. Samuel AL (2000) Some studies in machine learning using the game of checkers. IBM J Res Dev 44(1.2):206–226

    Article  Google Scholar 

  4. Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T (2022) Machine learning and conventional statistics: making sense of the differences. Knee Surg Sports Traumatol Arthrosc 30(3):753–757

    Article  Google Scholar 

  5. Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, vol 2. Springer, New York

    Book  MATH  Google Scholar 

  6. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  MathSciNet  MATH  Google Scholar 

  7. Li F, Zhang NR (2010) Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 105(491):1202–1214

    Article  MathSciNet  MATH  Google Scholar 

  8. Stingo FC, Vannucci M (2011) Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 27(4):495–501

    Article  Google Scholar 

  9. Stingo FC, Chen YA, Tadesse MG, Vannucci M (2011) Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes. Ann Appl Stat 5(3):1978–2002

    Article  MathSciNet  MATH  Google Scholar 

  10. Do K-A, Qin ZS, Vannucci M (2013) Advances in statistical bioinformatics: models and integrative inference for high-throughput data. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Cassese A, Guindani M, Tadesse MG, Falciani F, Vannucci M (2014) A hierarchical Bayesian model for inference of copy number variants and their association to gene expression. Ann Appl Stat 8(1):148

    Article  MathSciNet  MATH  Google Scholar 

  12. Cassese A, Guindani M, Vannucci M (2016) iBATCGH: Integrative Bayesian analysis of transcriptomic and CGH data. In: Statistical analysis for high-dimensional data. Springer, Cham, pp 105–123

  13. Li Q, Wang X, Liang F, Xiao G (2019) A Bayesian mark interaction model for analysis of tumor pathology images. Ann Appl Stat 13(3):1708

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Q, Jiang S, Koh AY, Xiao G, Zhan X (2019) Bayesian modeling of microbiome data for differential abundance analysis. arXiv preprint. arXiv:1902.08741

  15. Zhang C, Xiao G, Moon C, Chen M, Li Q (2020) Bayesian landmark-based shape analysis of tumor pathology images. arXiv preprint. arXiv:2012.01149

  16. Jiang X, Wang S, Guo L, Wen Z, Jia L, Xu L, Xiao G, Li Q (2023) Integrating image and molecular profiles for spatial transcriptomics analysis. bioRxiv preprint. https://doi.org/10.1101/2023.06.18.545488

  17. Wang S, Wang T, Yang L, YI F, Luo X, Yang Y, Gazdar A, Fujimoto J, Wistuba II, Yao B, Lin S, Xie Y, Mao Y, Xia, G (2018) ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by convolutional neural network. arXiv Preprint. arXiv:1809.10240

  18. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns, vol 70. Wiley, Chichester

    MATH  Google Scholar 

  19. Li Q, Yi F, Wang T, Xiao G, Liang F (2017) Lung cancer pathological image analysis using a hidden Potts model. Cancer Inf 16:1176935117711910

    Google Scholar 

  20. Li Q, Wang X, Liang F, Yi F, Xie Y, Gazdar A, Xiao G (2018) A Bayesian hidden Potts mixture model for analyzing lung cancer pathology images. Biostatistics 20(4):565–581

    Article  MathSciNet  Google Scholar 

  21. Hammersley JM, Clifford P (1971) Markov fields on finite graphs and lattices. Unpublished manuscript, Oxford University

  22. Liang F (2010) A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants. J Stat Comput Simul 80(9):1007–1022

    Article  MathSciNet  MATH  Google Scholar 

  23. Cox DR (1992) Regression models and life-tables. In: Breakthroughs in statistics. Springer, New York, pp 527–541

  24. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, Vijver MJ, West RB, Rijn M, Koller D (2011) Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 3(108):108–113

    Article  Google Scholar 

  25. Wang S, Chen A, Yang L, Cai L, Xie Y, Fujimoto J, Gazdar A, Xiao G (2018) Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci Rep 8(1):1–9

    Google Scholar 

  26. Fernández E, Yang S, Chiou SH, Moon C, Zhang C, Yao B, Xiao G, Li Q (2022) SAFARI: shape analysis for AI-segmented images. BMC Med Imaging 22(1):1–7

    Article  Google Scholar 

  27. Kilday J, Palmieri F, Fox MD (1993) Classifying mammographic lesions using computerized image analysis. IEEE Trans Med Imaging 12(4):664–669

    Article  Google Scholar 

  28. Georgiou H, Mavroforakis M, Dimitropoulos N, Cavouras D, Theodoridis S (2007) Multi-scaled morphological features for the characterization of mammographic masses using statistical classification schemes. Artif Intell Med 41(1):39–55

    Article  Google Scholar 

  29. Li Z, Wang W, Shin S, Choi HD (2013) Enhanced roughness index for breast cancer benign/malignant measurement using Gaussian mixture model. In: Proceedings of the 2013 research in adaptive and convergent systems, pp 177–181

  30. Rahmani Seryasat O, Haddadnia J, Ghayoumi Zadeh H (2016) Assessment of a novel computer aided mass diagnosis system in mammograms. Iran Q J Breast Dis 9(3):31–41

    Google Scholar 

  31. Sanghani P, Ti AB, King NKK, Ren H (2019) Evaluation of tumor shape features for overall survival prognosis in glioblastoma multiforme patients. Surg Oncol 29:178–183

    Article  Google Scholar 

  32. Vadmal V, Junno G, Badve C, Huang W, Waite KA, Barnholtz-Sloan JS (2020) MRI image analysis methods and applications: an algorithmic perspective using brain tumors as an exemplar. Neuro-Oncol Adv 2(1):049

    Google Scholar 

  33. Strait J, Chkrebtii O, Kurtek S (2019) Automatic detection and uncertainty quantification of landmarks on elastic curves. J Am Stat Assoc 114(527):1002–1017

    Article  MathSciNet  MATH  Google Scholar 

  34. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  Google Scholar 

  35. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81

    Article  Google Scholar 

  36. Moon C, Li Q, Xiao G (2020) Using persistent homology topological features to characterize medical images: case studies on lung and brain cancers. arxiv preprint. arXiv:2012.12102

  37. Wang S, Rong R, Yang DM, Fujimoto J, Yan S, Cai L, Yang L, Luo D, Behrens C, Parra ER et al (2020) Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res 80(10):2056–2066

    Article  Google Scholar 

  38. Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J (2018) Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. Cancer Res 78(20):5970–5979

    Article  Google Scholar 

  39. Moses L, Pachter L (2022) Museum of spatial transcriptomics. Nat Methods 19(5):534–546

    Article  Google Scholar 

  40. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502

    Article  Google Scholar 

  41. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20(5):273–282

    Article  Google Scholar 

  42. Zhu Q, Shah S, Dries R, Cai L, Yuan G-C (2018) Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat Biotechnol 36(12):1183–1190

    Article  Google Scholar 

  43. Pham D, Tan X, Xu J, Grice LF, Lam PY, Raghubar A, Vukovic J, Ruitenberg MJ, Nguyen Q (2020) stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell–cell interactions and spatial trajectories within undissociated tissues. bioRxiv preprint. https://doi.org/10.1101/2020.05.31.125658

  44. Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS, Pulliam T, Williams SR, Uytingco CR, Taylor SE, Nghiem P et al (2021) Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol 39(11):1375–1384

    Article  Google Scholar 

  45. Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, Lee EB, Shinohara RT, Li M (2021) SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods 18(11):1342–1351

    Article  Google Scholar 

  46. Fox H (2000) Is H &E morphology coming to an end? J Clin Pathol 53(1):38–40

    Article  Google Scholar 

Download references

Funding

This study was supported by National Science Foundation (Grant Nos. 2113674, 2210912) and National Institutes of Health (Grant No. 1R01GM141519-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwei Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q. AI-Powered Bayesian Statistics in Biomedicine. Stat Biosci 15, 737–749 (2023). https://doi.org/10.1007/s12561-023-09400-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-023-09400-x

Keywords

Navigation