Skip to main content
Log in

Accelerometry Data in Health Research: Challenges and Opportunities

Review and Examples

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Wearable accelerometers provide detailed, objective, and continuous measurements of physical activity (PA). Recent advances in technology and the decreasing cost of wearable devices led to an explosion in the popularity of wearable technology in health research. An ever-increasing number of studies collect high-throughput, sub-second level raw acceleration data. In this paper, we discuss problems related to the collection and analysis of raw accelerometry data and refer to published solutions. In particular, we describe the size and complexity of the data, the within- and between-subject variability, and the effects of sensor location on the body. We also discuss challenges related to sampling frequency, device calibration, data labeling, and multiple PA monitors synchronization. We illustrate these points using the Developmental Epidemiological Cohort Study (DECOS), which collected raw accelerometry data on individuals both in a controlled and the free-living environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Varma VR, Dey D, Leroux A, Di J, Urbanek J, Xiao L, Zipunnikov V (2017) Re-evaluating the effect of age on physical activity over the lifespan. Prev Med. https://doi.org/10.1016/j.ypmed.2017.05.030

  2. Urbanek JK, Spira AP, Di J, Leroux A, Crainiceanu C, Zipunnikov V (2018a) Epidemiology of objectively measured bedtime and chronotype in US adolescents and adults: NHANES 2003–2006. Chronobiol Int https://doi.org/10.1080/07420528.2017.1411359

  3. Schrack JA, Zipunnikov V, Goldsmith J, Bai J, Simonsick EM, Crainiceanu C, Ferrucci L (2014) Assessing the physical cliff: detailed quantification of age-related differences in daily patterns of physical activity. J Gerontol 69(8):973–979. https://doi.org/10.1093/gerona/glt199

    Article  Google Scholar 

  4. Xiao L, Huang L, Schrack JA, Ferrucci L, Zipunnikov V, Crainiceanu CM (2015) Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics 16(2):352–367. https://doi.org/10.1093/biostatistics/kxu045

    Article  MathSciNet  Google Scholar 

  5. Cook DJ, Thompson JE, Prinsen SK, Dearani JA, Deschamps C (2013) Functional recovery in the elderly after major surgery: assessment of mobility recovery using wireless technology. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2013.05.092

  6. Fitzsimons CF, Kirk A, Baker G, Michie F, Kane C, Mutrie N (2013) Using an individualised consultation and activPAL\(^{{\rm TM}}\) feedback to reduce sedentary time in older Scottish adults: results of a feasibility and pilot study. Prev Med. https://doi.org/10.1016/j.ypmed.2013.07.017

  7. Gresham G, Schrack J, Gresham LM, Shinde AM, Hendifar AE, Tuli R, Rimel BJ, Figlin R, Meinert CL, Piantadosi S (2018) Wearable activity monitors in oncology trials: current use of an emerging technology. Contemporary Clinical Trials https://doi.org/10.1016/j.cct.2017.11.002

  8. Urbanek JK, Zipunnikov V, Harris T, Fadel W, Glynn N, Koster A, Caserotti P, Crainiceanu C, Harezlak J (2018c) Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. Physiol Meas. https://doi.org/10.1088/1361-6579/aaa74d

  9. Urbanek JK, Zipunnikov V, Harris T, Crainiceanu C, Harezlak J, Glynn NW (2018b) Validation of gait characteristics extracted from raw accelerometry during walking against measures of physical function, mobility, fatigability, and fitness. J Gerontol Ser A. https://doi.org/10.1093/gerona/glx174

  10. Chen KY, Janz KF, Zhu W, Brychta RJ (2012) Redefining the roles of sensors in objective physical activity monitoring. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e3182399bc8

  11. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP (2008) Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol 167(7):875–881. https://doi.org/10.1093/aje/kwm390

    Article  Google Scholar 

  12. Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N (2011) Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 200306. Eur Heart J 32(5):590–597. https://doi.org/10.1093/eurheartj/ehq451

    Article  Google Scholar 

  13. Varma VR, Dey D, Leroux A, Di J, Urbanek J, Xiao L, Zipunnikov V (2018) Total volume of physical activity: TAC, TLAC or TAC(\(\lambda \)). https://doi.org/10.1016/j.ypmed.2017.10.028

  14. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, Mcdowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40(1):181–188. https://doi.org/10.1249/mss.0b013e31815a51b3

    Article  Google Scholar 

  15. Copeland JL, Esliger DW (2009) Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. https://doi.org/10.1123/japa.17.1.17

  16. Di J, Leroux A, Urbanek J, Varadhan R, Spira A, Schrack J, Zipunnikov V (2017) Patterns of sedentary and active time accumulation are associated with mortality in us adults: the NHANES study. bioRxiv https://doi.org/10.1101/182337

  17. Wrobel J, Zipunnikov V, Schrack J, Goldsmith J (2018) Registration for exponential family functional data. Biometrics 0(ja). https://doi.org/10.1111/biom.12963

  18. Shou H, Zipunnikov V, Crainiceanu CM, Greven S (2015) Structured functional principal component analysis. Biometrics. https://doi.org/10.1111/biom.12236

  19. Xiao L, Li Y, Ruppert D (2013) Fast bivariate P -splines: the sandwich smoother. J R Stat Soc Ser B. https://doi.org/10.1111/rssb.12007

  20. Trost SG, Rosenkranz RR, Dzewaltowski D (2008) Physical activity levels among children attending after-school programs. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e318161eaa5

  21. Doherty A, Jackson D, Hammerla N, Plötz T, Olivier P, Granat MH, White T, Van Hees VT, Trenell MI, Owen CG, Preece SJ, Gillions R, Sheard S, Peakman T, Brage S, Wareham NJ (2017) Large scale population assessment of physical activity using wrist worn accelerometers: the UK biobank study. PLoS ONE. https://doi.org/10.1371/journal.pone.0169649

  22. Bai J, Di C, Xiao L, Evenson KR, LaCroix AZ, Crainiceanu CM, Buchner DM (2016) An activity index for raw accelerometry data and its comparison with other activity metrics. PLoS ONE. https://doi.org/10.1371/journal.pone.0160644

  23. Pober DM, Staudenmayer J, Raphael C, Freedson PS (2006) Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 38(9):1626–1634. https://doi.org/10.1249/01.mss.0000227542.43669.45

    Article  Google Scholar 

  24. Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P (2009) An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107(4):1300–1307. https://doi.org/10.1152/japplphysiol.00465.2009

    Article  Google Scholar 

  25. Attal F, Mohammed S, Dedabrishvili M, Chamroukhi F, Oukhellou L, Amirat Y (2015) Physical human activity recognition using wearable sensors. Sensors (Basel) 15(12):31314–31338. https://doi.org/10.3390/s151229858

    Article  Google Scholar 

  26. Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data pervasive computing. Pervasive Comput 3001:1–17. https://doi.org/10.1007/978-3-540-24646-6_1

    Article  Google Scholar 

  27. Preece SJ, Goulermas JY, Kenney LPJ, Howard D, Meijer K, Crompton R (2009) Activity identification using body-mounted sensors—a review of classification techniques. Physiol Meas 30(4):R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01

    Article  Google Scholar 

  28. Bai J, Goldsmith J, Caffo B, Glass TA, Crainiceanu CM (2012) Movelets: a dictionary of movement. Electron J Stat 6:559–578. https://doi.org/10.1214/12-EJS684

    Article  MathSciNet  MATH  Google Scholar 

  29. He B, Bai J, Zipunnikov VV, Koster A, Caserotti P, Lange-Maia B, Glynn NW, Harris TB, Crainiceanu CM (2014) Predicting human movement with multiple accelerometers using movelets. Med Sci Sports Exerc 46(9):1859–1866. https://doi.org/10.1249/MSS.0000000000000285

    Article  Google Scholar 

  30. Xiao L, He B, Koster A, Caserotti P, Lange-Maia B, Glynn NW, Harris TB, Crainiceanu CM (2016) Movement prediction using accelerometers in a human population. Biometrics 72(2):513–524. https://doi.org/10.1111/biom.12382

    Article  MathSciNet  MATH  Google Scholar 

  31. Trost SG, Mciver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37(11):531–543. https://doi.org/10.1249/01.mss.0000185657.86065.98

    Article  Google Scholar 

  32. Schrack JA, Cooper R, Koster A, Shiroma EJ, Murabito JM, Rejeski WJ, Ferrucci L, Harris TB (2016) Assessing daily physical activity in older adults: unraveling the complexity of monitors, measures, and methods. J Gerontol Ser A. https://doi.org/10.1093/gerona/glw026

  33. Song J, Swartz MD, Gabriel KP, Basen-Engquist K (2018) A semiparametric model for wearable sensor-based physical activity monitoring data with informative device wear. Biostatistics. https://doi.org/10.1093/biostatistics/kxx073

  34. Staudenmayer J, Zhu W, Catellier DJ (2012) Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc 44(SUPPL. 1). https://doi.org/10.1249/MSS.0b013e3182399e0f

  35. Troiano RP, McClain JJ, Brychta RJ, Chen KY (2014) Evolution of accelerometer methods for physical activity research. Br J Sports Med 48(13):1019–1023. https://doi.org/10.1136/bjsports-2014-093546

    Article  Google Scholar 

  36. Matthews CE, Hagströmer M, Pober DM, Bowles HR (2012) Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc 44(SUPPL. 1):68–76. https://doi.org/10.1249/MSS.0b013e3182399e5b

    Article  Google Scholar 

  37. Freedson P, Bowles HR, Troiano R, Haskell W (2012) Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc 44(SUPPL. 1):S1–S4. https://doi.org/10.1249/MSS.0b013e3182399b7e

    Article  Google Scholar 

  38. Troiano RP (2007) Large-scale applications of accelerometers: new frontiers and new questions. Med Sci Sports Exerc. https://doi.org/10.1097/mss.0b013e318150d42e

  39. Choi L, Ward SC, Schnelle JF, Buchowski MS (2012) Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc 44(10):2009–2016

    Article  Google Scholar 

  40. Van Domelen DR (2018) Accelerometry: functions for processing accelerometer data. https://CRAN.R-project.org/package=accelerometry. r package version 3.1.2

  41. Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, Yang S, Rice JC (2005) Imputation of missing data when measuring physical activity by accelerometry. Med Sci Sports Exerc. https://doi.org/10.1249/01.mss.0000185651.59486.4e

  42. Storti KL, Pettee KK, Brach JS, Talkowski JB, Richardson CR, Kriska AM (2008) Gait speed and step-count monitor accuracy in community-dwelling older adults. Med Sci Sports Exerc 40(1):59–64. https://doi.org/10.1249/mss.0b013e318158b504

    Article  Google Scholar 

  43. Fortune E, Lugade V, Morrow M, Kaufman K (2014) Validity of using tri-axial accelerometers to measure human movement—part II: step counts at a wide range of gait velocities. Med Eng Phys 36(6):659–669. https://doi.org/10.1016/j.medengphy.2014.02.006

    Article  Google Scholar 

  44. Fairclough SJ, Noonan R, Rowlands AV, van Hees V, Knowles Z, Boddy LM (2016) Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Med Sci Sports Exerc 48(2):245–253. https://doi.org/10.1249/MSS.0000000000000771

    Article  Google Scholar 

  45. Brønd JC, Arvidsson D (2016) Sampling frequency affects the processing of actigraph raw acceleration data to activity counts. J Appl Physiol 120(3):362–369. https://doi.org/10.1152/japplphysiol.00628.2015

    Article  Google Scholar 

  46. Lange-Maia BS, Newman AB, Strotmeyer ES, Harris TB, Caserotti P, Glynn NW (2015) Performance on fast- and usual-paced 400-m walk tests in older adults: are they comparable? Aging Clin Exp Res 27(3):309–314. https://doi.org/10.1007/s40520-014-0287-y

    Article  Google Scholar 

  47. van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, Ekelund U, Renström F, Franks PW, Horsch A, Brage S (2013) Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. https://doi.org/10.1371/journal.pone.0061691

  48. van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, Trenell MI, White T, Wareham NJ, Brage S (2014) Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol 117(7):738–744. https://doi.org/10.1152/japplphysiol.00421.2014

    Article  Google Scholar 

  49. Vähä-Ypyä H, Vasankari T, Husu P, Suni J, Sievänen H (2015) A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging 35(1):64–70. https://doi.org/10.1111/cpf.12127

    Article  Google Scholar 

  50. Mariani B, Rouhani H, Crevoisier X, Aminian K (2013) Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 37(2):229–234. https://doi.org/10.1016/j.gaitpost.2012.07.012

    Article  Google Scholar 

  51. Bai J, He B, Shou H, Zipunnikov V, Glass TA, Crainiceanu CM (2014) Normalization and extraction of interpretable metrics from raw accelerometry data. Biostatistics 15(1):102–116. https://doi.org/10.1093/biostatistics/kxt029

    Article  Google Scholar 

  52. Esliger DW, Copeland JL, Barnes JD, Tremblay MS (2005) Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health 2(3):366–383. https://doi.org/10.1123/jpah.2.3.366

    Article  Google Scholar 

  53. Cain KL (2014) Accelerometer scoring protocol for the ipen-adult study. http://www.ipenproject.org/documents/methods_docs/IPEN_Protocol.pdf. Accessed 19 Nov 2017

  54. NHANES (2011) National Health and Nutrition Examination Survey. 2011-2012 physical activity monitor (PAM) procedures manual. Centers for disease control and prevention (CDC). National Center for Health Statistics (NCHS), Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/manuals/Physical_Activity_Monitor_Manual.pdf. Accessed 19 Nov 2017

  55. NHANES (2006) National Health and Nutrition Examination Survey. 2003-2004 data documentation, codebook, and frequencies. Physical activity monitor. Centers for disease control and prevention (CDC). National Center for Health Statistics (NCHS), Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/PAXRAW_C.htm. Accessed 19 Nov 2017

  56. NHANES (2008) National Health and Nutrition Examination Survey. 2005-2006 data documentation, codebook, and frequencies. Physical activity monitor. Centers for disease control and prevention (CDC). National Center for Health Statistics (NCHS), Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.htm. Accessed 19 Nov 2017

  57. Lyden K, Keadle SK, Staudenmayer J, Freedson PS (2014) A method to estimate free-living active and sedentary behavior from an accelerometer. Med Sci Sports Exerc 46(2):386–397. https://doi.org/10.1249/MSS.0b013e3182a42a2d

    Article  Google Scholar 

  58. Urbanek JK, Vadim Zipunnikov TH, Fadel W, Glynn N, Koster A, Caserotti P, Crainiceanu C, Harezlak J (2015) Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. arXiv:1505.04066. Accessed 19 Nov 2017

  59. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J (2011) Gait speed and survival in older adults. JAMA 305(1):50–58. https://doi.org/10.1001/jama.2010.1923

    Article  Google Scholar 

  60. IJmker T, Lamoth CJ (2012) Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 35(1):126–130. https://doi.org/10.1016/j.gaitpost.2011.08.022

    Article  Google Scholar 

  61. Urbanek JK, Harezlak J, Glynn NW, Harris T, Crainiceanu C, Zipunnikov V (2017) Stride variability measures derived from wrist- and hip-worn accelerometers. Gait Posture 52:217–223. https://doi.org/10.1016/j.gaitpost.2016.11.045

    Article  Google Scholar 

  62. Koster A, Shiroma EJ, Caserotti P, Matthews CE, Chen KY, Glynn NW, Harris TB (2016) Comparison of sedentary estimates between activPAL and Hip- and Wrist-Worn ActiGraph. Med Sci Sports Exerc 48(8):1514–1522. https://doi.org/10.1249/MSS.0000000000000924

    Article  Google Scholar 

  63. Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S (2013) Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. https://doi.org/10.1249/MSS.0b013e31827f0d9c

  64. Trost SG, Zheng Y, Wong WK (2014) Machine learning for activity recognition: hip versus wrist data. Physiol Meas 35(11):2183–2189. https://doi.org/10.1088/0967-3334/35/11/2183

    Article  Google Scholar 

  65. Del Din S, Hickey A, Hurwitz N, Mathers JC, Rochester L, Godfrey A (2016) Measuring gait with an accelerometer-based wearable: influence of device location, testing protocol and age. Physiol Meas 37(10):1785–1797. https://doi.org/10.1088/0967-3334/37/10/1785

    Article  Google Scholar 

  66. Boerema S, van Velsen L, Schaake L, Tönis T, Hermens H (2014) Optimal sensor placement for measuring physical activity with a 3D accelerometer. Sensors 14(2):3188–3206. https://doi.org/10.3390/s140203188

    Article  Google Scholar 

  67. O’Neill B, McDonough SM, Wilson JJ, Bradbury I, Hayes K, Kirk A, Kent L, Cosgrove D, Bradley JM, Tully MA (2017) Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: a validity and feasibility study. Respir Res 18(1):16. https://doi.org/10.1186/s12931-016-0497-2

    Article  Google Scholar 

  68. Edwardson CL, Winkler EA, Bodicoat DH, Yates T, Davies MJ, Dunstan DW, Healy GN (2016) Considerations when using the activPAL monitor in field based research with adult populations. J Sport Health Sci. https://doi.org/10.1016/j.jshs.2016.02.002

  69. Yurtman A, Barshan B (2017) Activity recognition invariant to sensor orientation with wearable motion sensors. Sensors (Switzerland). https://doi.org/10.3390/s17081838

  70. Dominguez-Vega ZT, Martinez-Mendez R, Lorias-Espinoza D (2015) High sampling rate datalogger for the characterization of acceleration signals on the human body running. In: 25th international conference on electronics, communications and computers, CONIELECOMP 2015, pp 173–177. https://doi.org/10.1109/CONIELECOMP.2015.7086947

  71. ActiGraph (2016) What are counts? https://actigraph.desk.com/customer/en/portal/articles/2515580-what-are-counts-. Accessed 23 Nov 2017

  72. Bassett DR, Rowlands A, Trost SG (2012) Calibration and validation of wearable monitors. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e3182399cf7

  73. Mathworks (2016) MATLAB—Mathworks—MATLAB & Simulink. 26 Nov 2016

  74. Bussmann J, Tulen J, van Herel E, Stam H (1998) Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology 35(5):488–496. https://doi.org/10.1017/S0048577298971153

    Article  Google Scholar 

  75. Godfrey A, Del Din S, Barry G, Mathers JC, Rochester L (2015) Instrumenting gait with an accelerometer: a system and algorithm examination. Med Eng Phys 37(4):400–407. https://doi.org/10.1016/j.medengphy.2015.02.003

    Article  Google Scholar 

  76. Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G (2016) Hip and wrist accelerometer algorithms for free-living behavior classification. Med Sci Sports Exerc 48(5):933–940. https://doi.org/10.1249/MSS.0000000000000840

    Article  Google Scholar 

  77. Hickey A, Del Din S, Rochester L, Godfrey A (2017) Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Physiol Meas 38(1):N1–N15. https://doi.org/10.1088/1361-6579/38/1/N1

    Article  Google Scholar 

  78. Straczkiewicz M, Urbanek JK, Fadel WF, Crainiceanu CM, Harezlak J (2016) Automatic car driving detection using raw accelerometry data. Physiol Meas 37(10):1757–1769. https://doi.org/10.1088/0967-3334/37/10/1757

    Article  Google Scholar 

  79. Chen JH, Waite L, Kurina LM, Ra Thisted, McClintock M, Lauderdale DS (2014) Insomnia symptoms and actigraph-estimated sleep characteristics in a nationally representative sample of older adults. J Gerontol Ser A 8:1–8. https://doi.org/10.1093/gerona/glu144

    Google Scholar 

  80. Boudebesse C, Geoffroy PA, Henry C, Germain A, Scott J, Lajnef M, Leboyer M, Bellivier F, Etain B (2015) Links between sleep and body mass index in bipolar disorders: an exploratory study. Eur Psychiatry 30(1):89–93. https://doi.org/10.1016/j.eurpsy.2014.04.006

    Article  Google Scholar 

  81. Cleland I, Kikhia B, Nugent C, Boytsov A, Hallberg J, Synnes K, McClean S, Finlay D (2013) Optimal placement of accelerometers for the detection of everyday activities. Sensors (Basel, Switzerland) 13(7):9183–9200. https://doi.org/10.3390/s130709183

    Article  Google Scholar 

  82. Altini M, Penders J, Vullers R, Amft O (2015) Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. IEEE J Biomed Health Inf 19(1):219–226. https://doi.org/10.1109/JBHI.2014.2313039

    Article  Google Scholar 

  83. Stallings W (2008) Operating systems: internals and design principles, 6th edn. Prentice Hall Press, Upper Saddle River

    Google Scholar 

  84. Bennett TR, Gans N, Jafari R (2015) Multi-sensor data-driven: synchronization using wearable sensors. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers (ISWC ’15), pp 113–116. ACM, New York. https://doi.org/10.1145/2802083.2808393

  85. GaitUp (2017) Products. https://www.gaitup.com/products/. Accessed 25 Nov 2017

  86. Curone D, Bertolotti GM, Cristiani A, Secco EL, Magenes G (2010) A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity. IEEE Trans Inf Technol Biomed. https://doi.org/10.1109/TITB.2010.2050696

Download references

Acknowledgements

The authors would like to acknowledge Annemarie Koster, Ph.D. and Paolo Caserotti, Ph.D. for designing the DECOS experiments.

Funding

This research was supported by Pittsburgh Claude D. Pepper Older Americans Independence Center, Research Registry, and Developmental Pilot Grant (PI: Glynn)—NIH P30 AG024826 and NIH P30 AG024827; National Institute on Aging Professional Services Contract HHSN271201100605P; NIA Aging Training Grant (PI: AB Newman) T32-AG-000181. The project was supported, in part, by the Intramural Research Program of the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Karas.

Appendix A

Appendix A

See Table 3.

Table 3 Summary of the four statistics: ENMO, VMC, \(\hbox {AI}_0\), and AI for five selected subjects and all subjects: median, 25-th percentile and 75-th percentile (percentiles are reported in brackets), obtained from accelerometry data collected at the hip during five activities: writing, washing dishes, vacuuming, getting dressed, and walking

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karas, M., Bai, J., Strączkiewicz, M. et al. Accelerometry Data in Health Research: Challenges and Opportunities. Stat Biosci 11, 210–237 (2019). https://doi.org/10.1007/s12561-018-9227-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-018-9227-2

Keywords

Navigation