# A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD

- 537 Downloads
- 1 Citations

## Abstract

In this paper, we propose a Bayesian hierarchical approach to infer network structures across multiple sample groups where both shared and differential edges may exist across the groups. In our approach, we link graphs through a Markov random field prior. This prior on network similarity provides a measure of pairwise relatedness that borrows strength only between related groups. We incorporate the computational efficiency of continuous shrinkage priors, improving scalability for network estimation in cases of larger dimensionality. Our model is applied to patient groups with increasing levels of chronic obstructive pulmonary disease severity, with the goal of better understanding the break down of gene pathways as the disease progresses. Our approach is able to identify critical hub genes for four targeted pathways. Furthermore, it identifies gene connections that are disrupted with increased disease severity and that characterize the disease evolution. We also demonstrate the superior performance of our approach with respect to competing methods, using simulated data.

## Keywords

Gaussian graphical model Bayesian inference Markov random field prior Spike-and-slab prior Gene network Chronic obstructive pulmonary disease (COPD)## References

- 1.Armagan A, Dunson D, Lee J (2013) Generalized double pareto shrinkage. Stat Sin 23(1):119MathSciNetzbMATHGoogle Scholar
- 2.Atay-Kayis A, Massam H (2005) The marginal likelihood for decomposable and non-decomposable graphical gaussian models. Biometrika 92:317–355MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bahr T et al (2013) Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 49(2):316–23CrossRefGoogle Scholar
- 4.Bowler R et al (2014) Plasma sphingolipids associated with copd phenotypes. Am J Respir Crit Care Med 191(3):275–284CrossRefGoogle Scholar
- 5.Chatr-Aryamontri A, Breitkreutz B, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Kolas N, O’Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M (2015) The biogrid interaction database: 2015 update. Nucleic Acids Res 43(Database issue):470–478CrossRefGoogle Scholar
- 6.Chen Z, Kim H, Sciurba F, Lee S, Feghali-Bostwick C, Stolz D, Dhir R, Landreneau R, Schuchert M, Yousem S, Nakahira K, Pilewski J, Lee J, Zhang Y, Ryter S, Choi A (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE 3(10):3316CrossRefGoogle Scholar
- 7.Clyde M, George E (2004) Model uncertainty. Stat Sci 19(1):81–94MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Danaher P (2012) Jgl: performs the joint graphical lasso for sparse inverse covariance estimation on multiple classes. http://CRAN.R-project.org/package=JGL
- 9.Danaher P, Wang P, Witten D (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc B 76(2):373–397MathSciNetCrossRefGoogle Scholar
- 10.Dobra A, Jones B, Hans C, Nevins J, West M (2004) Sparse graphical models for exploring gene expression data. J Multivar Anal 90:196–212MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Dobra A, Lenkoski A, Rodriguez A (2012) Bayesian inference for general gaussian graphical models with application to multivariate lattice data. J Am Stat Assoc 106:1418–1433MathSciNetCrossRefzbMATHGoogle Scholar
- 12.GEO (2015) Gene expression omnibus. http://www.ncbi.nlm.nih.gov/geo
- 13.George E, McCulloch R (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88:881–889CrossRefGoogle Scholar
- 14.Gottardo R, Raftery A (2008) Markov chain Monte Carlo with mixtures of mutually singular distributions. J Comput Graph Stat 17(4):949–975MathSciNetCrossRefGoogle Scholar
- 15.Griffin J, Brown P (2010) Inference with normal-gamma prior distributions in regression problems. Bayesian Anal 5(1):171–188MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Guo J, Levina E, Michailidis G, Zhu J (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
- 18.Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of affymetrix genechip probe level data nucleic acids research. Nucleic Acids Res 31(4):e15CrossRefGoogle Scholar
- 19.Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M (2005) Experiments in stochastic computation for high dimensional graphical models. Stat Sci 20(4):388–400MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in kegg. Nucleic Acids Res 42:199–205CrossRefGoogle Scholar
- 21.Khondker Z, Zhu H, Chu H, Lin W, Ibrahim J (2013) The Bayesian Covariance Lasso. Stat Its Interface 6(2):243MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Langfelder P, Mischel SHP (2013) When is hub gene selection better than standard meta-analysis? PLoS ONE 8(4):e61505CrossRefGoogle Scholar
- 23.Li F, Zhang N (2010) Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 105(491):1202–1214MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Marwick J, Caramori G, Casolari P, Mazzoni F, Kirkham P, Adcock I, Chung K, Papi A (2010) A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 125(5):1146–53CrossRefGoogle Scholar
- 25.Mukherjee S, Speed T (2008) Network inference using informative priors. Proc Natl Acad Sci 105(38):14,313–14,318CrossRefGoogle Scholar
- 26.Ni Y, Marchetti G, Baladandayuthapani V, Stingo F (2015) Bayesian approaches for large biological networks. In: Mitra R, Muller P (eds) Nonparametric Bayesian methods in biostatistics and bioinformatics. Springer, New YorkGoogle Scholar
- 27.Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 20(1):140–157MathSciNetzbMATHGoogle Scholar
- 28.Parshall M (1999) Adult emergency visits for chronic cardiorespiratory disease: does dyspnea matter? Nurs Res 48(2):62–70CrossRefGoogle Scholar
- 29.Peterson C, Stingo F, Vannucci M (2015) Bayesian inference of multiple Gaussian graphical models. J Am Stat Assoc 110(509):159–174MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Peterson C, Stingo F, Vannucci M (2016) Joint bayesian variable and graph selection for regression models with network-structured predictors. Stat Med 35(7):1017–1031MathSciNetCrossRefGoogle Scholar
- 31.Regan EA et al (2010) Genetic epidemiology of copd (copdgene) study design. COPD 7(1):32–43CrossRefGoogle Scholar
- 32.Reimand J, Wagih O, Bader G (2013) The mutational landscape of phosphorylation signaling in cancer. Sci Rep. doi: 10.1038/srep02651
- 33.Roverato A (2002) Hyper-inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand J Stat 29:391–411MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Scott J, Berger J (2010) Bayes and empirical Bayes multiplicity adjustment in the variable-selection problem. Ann Stat 38(5):2587–2619MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Scott J, Carvalho C (2008) Feature-inclusion stochastic search for Gaussian graphical models. J Comput Graphical Stat 17:790–808MathSciNetCrossRefGoogle Scholar
- 36.Singh D et al (2014) Altered gene expression in blood and sputum in copd frequent exacerbators in the eclipse cohort. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107381
- 37.Skrepnek G, Skrepnek S (2004) Epidemiology, clinical and economic burden, and natural history of chronic obstructive pulmonary disease and asthma. AM J Manag Care 10(5):S129–38Google Scholar
- 38.Stelzer G, Dalah I, Stein T, Satanower Y, Rosen N, Nativ N, Oz-Levi D, Olender T, Belinky F, Bahir I, Krug H, Perco P, Mayer B, Kolker E, Safran M, Lancet D (2011) In-silico human genomics with genecards. Hum Genomics 5(6):709–717CrossRefGoogle Scholar
- 39.Stingo F, Marchetti G (2015) Efficient local updates for undirected graphical models. Stat Comput 25:159–171MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Stingo F, Vannucci M (2011) Variable selection for discriminant analysis with markov random field priors for the analysis of microarray data. Bioinformatics 27(4):495–501CrossRefGoogle Scholar
- 41.Stingo F, Chen Y, Vannucci M, Barrier M, Mirkes P (2010) A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann Appl Stat 4(4):2024MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Telesca D, Mueller P, Kornblau S, Suchard M, Ji Y (2012) Modeling protein expression and protein signaling pathways. J Am Stat Assoc 107(500):1372–1384MathSciNetCrossRefzbMATHGoogle Scholar
- 43.Wang H (2012) The Bayesian graphical lasso and efficient posterior computation. Bayesian Anal 7(2):771–790MathSciNetGoogle Scholar
- 44.Wang H (2015) Scaling it up: stochastic search structure learning in graphical models. Bayesian Anal 10(2):351–377MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Wang H, Li Z (2012) Efficient gaussian graphical model determination under g-wishart prior distributions. Electron J Stat 6:168–198MathSciNetCrossRefzbMATHGoogle Scholar
- 46.Yajima M, Telesca D, Ji Y, Muller P (2015) Detecting differential patterns of interaction in molecular pathways. Biostatistics 16(2):240–251MathSciNetCrossRefGoogle Scholar