Statistics in Biosciences

, Volume 9, Issue 2, pp 605–621 | Cite as

Post-GWAS Prioritization Through Data Integration Provides Novel Insights on Chronic Obstructive Pulmonary Disease

  • Qiongshi Lu
  • Chentian Jin
  • Jiehuan Sun
  • Russell Bowler
  • Katerina Kechris
  • Naftali Kaminski
  • Hongyu Zhao


Rich collections of genomic and epigenomic annotations, availabilities of large population cohorts for genome-wide association studies (GWASs), and advancements in data integration techniques provide the unprecedented opportunity to accelerate discoveries in complex disease studies through integrative analyses. In this paper, we apply a variety of approaches to integrate GWAS summary statistics of chronic obstructive pulmonary disease (COPD) with functional annotations to illustrate how data integration could help researchers understand complex human diseases. We show that incorporating functional annotations can better prioritize GWAS signals at both the global and the local levels. Signal prioritization on severe COPD GWAS reveals multiple potential risk loci that are linked with pulmonary functions. Enrichment analysis provides novel insights on the pathogenesis of COPD and hints the existence of genetic contributions to muscle dysfunction and chronic lung inflammation, two symptoms that are often comorbid with COPD. Our results suggest that rich signals for COPD genetics are still buried under the Bonferroni-corrected genome-wide significance threshold. Many more biological findings are expected to emerge as more samples are recruited for COPD studies.


Chronic obstructive pulmonary disease Data integration GWAS Functional annotation 



We thank all members of the Statistical and Applied Mathematical Sciences Institute (SAMSI) Data Integration: COPD Working Group as part of the SAMSI Beyond Bioinformatics Program. We also thank Dr. Michael Cho for sharing COPDGene GWAS summary statistics. We are grateful for the support of Drs. Sujit Ghosh and Snehalata Huzurbazar at SAMSI. This work was supported in part by the National Institutes of Health Grant R01 GM59507 and the VA Cooperative Studies Program of the Department of Veterans Affairs, Office of Research and Development. Funding for the COPDGene Study is provided by the National Heart, Lung, and Blood Institute Award Numbers R01HL089897 and R01HL089856. Further support provided by the COPD Foundation through contributions made to an Industry Advisory Board comprising AstraZeneca, Boehringer Ingelheim, Novartis Pfizer, Siemens, and Sunovion.

Supplementary material

12561_2016_9151_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (doc 1408 KB)


  1. 1.
    Abecasis GR et al. (2012) An integrated map of genetic variation from 1,092 human genomes Nature 491:56–65. doi: 10.1038/nature11632
  2. 2.
    Artigas MS et al (2011) Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet 43:1082–1090CrossRefGoogle Scholar
  3. 3.
    Baekvad-Hansen M, Nordestgaard BG, Tybjaerg-Hansen A, Dahl M (2010) Two novel mutations in surfactant protein-C, lung function and obstructive lung disease. Respir Med 104:418–425. doi: 10.1016/j.rmed.2009.10.012 CrossRefGoogle Scholar
  4. 4.
    Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  5. 5.
    Bhat TA, Panzica L, Kalathil SG, Thanavala Y (2015) Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 12:S169–S175. doi: 10.1513/AnnalsATS.201503-126AW Google Scholar
  6. 6.
    Bulik-Sullivan B et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241. doi: 10.1038/ng.3406 CrossRefGoogle Scholar
  7. 7.
    Casaburi R (2001) Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Med Sci Sports Exerc 33:S662–S670CrossRefGoogle Scholar
  8. 8.
    Cho MH et al (2010) Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42:200–202. doi: 10.1038/ng.535 CrossRefGoogle Scholar
  9. 9.
    Cho MH et al (2012) A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 21:947–957CrossRefGoogle Scholar
  10. 10.
    Cho MH et al (2014) Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2:214–225. doi: 10.1016/s2213-2600(14)70002-5 CrossRefGoogle Scholar
  11. 11.
    Chung D, Yang C, Li C, Gelernter J, Zhao H (2014) GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet 10:e1004787. doi: 10.1371/journal.pgen.1004787 CrossRefGoogle Scholar
  12. 12.
    DeMeo DL et al (2009) Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet 85:493–502CrossRefGoogle Scholar
  13. 13.
    Finucane HK et al (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47(11):1228–1235CrossRefGoogle Scholar
  14. 14.
    Gusev A et al (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95:535–552CrossRefGoogle Scholar
  15. 15.
    Hancock DB et al (2010) Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 42:45–52CrossRefGoogle Scholar
  16. 16.
    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367. doi: 10.1073/pnas.0903103106 CrossRefGoogle Scholar
  17. 17.
    Ingebrigtsen T et al (2010) Genetic influences on chronic obstructive pulmonary disease—a twin study. Respir Med 104:1890–1895CrossRefGoogle Scholar
  18. 18.
    Kellis M et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1318948111
  19. 19.
    Kichaev G et al (2014) Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet 10:e1004722. doi: 10.1371/journal.pgen.1004722 CrossRefGoogle Scholar
  20. 20.
    Kim HC, Mofarrahi M, Hussain SN (2008) Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chronic Obstr Pulm Dis 3:637CrossRefGoogle Scholar
  21. 21.
    Kundaje A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330CrossRefGoogle Scholar
  22. 22.
    Li C, Yang C, Gelernter J, Zhao H (2014) Improving genetic risk prediction by leveraging pleiotropy. Hum Genet 133:639–650CrossRefGoogle Scholar
  23. 23.
    Lu Q, Hu Y, Sun J, Cheng Y, Cheung K-H, Zhao H (2015) A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci Rep. doi: 10.1038/srep10576
  24. 24.
    Lu Q, Powles RL, Wang Q, He BJ, Zhao H (2016a) Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet 12:e1005947. doi: 10.1371/journal.pgen.1005947 CrossRefGoogle Scholar
  25. 25.
    Lu Q, Yao X, Hu Y, Zhao H (2016b) GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics 32:542–548. doi: 10.1093/bioinformatics/btv610 CrossRefGoogle Scholar
  26. 26.
    Maier R et al (2015) Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet 96:283–294CrossRefGoogle Scholar
  27. 27.
    Naghavi M et al (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171CrossRefGoogle Scholar
  28. 28.
    Pickrell JK (2014) Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet 94:559–573CrossRefGoogle Scholar
  29. 29.
    Pickrell J, Berisa T, Segurel L, Tung JY, Hinds D (2015) Detection and interpretation of shared genetic influences on 40 human traits. bioRxiv. doi: 10.1101/019885
  30. 30.
    Pillai SG et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5:e1000421CrossRefGoogle Scholar
  31. 31.
    Pruim RJ et al (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337CrossRefGoogle Scholar
  32. 32.
    Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefGoogle Scholar
  33. 33.
    Regan EA et al (2011) Genetic epidemiology of COPD (COPDGene) study design. COPD J Chronic Obstr Pulm Dis 7:32–43CrossRefGoogle Scholar
  34. 34.
    Repapi E et al (2010) Genome-wide association study identifies five loci associated with lung function. Nat Genet 42:36–44. doi: 10.1038/ng.501 CrossRefGoogle Scholar
  35. 35.
    Rovina N, Koutsoukou A, Koulouris NG (2013) Inflammation and immune response in COPD: Where do we stand? Mediat Inflamm 2013:413735CrossRefGoogle Scholar
  36. 36.
    Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24. doi: 10.1016/j.ajhg.2011.11.029 CrossRefGoogle Scholar
  37. 37.
    Ward LD, Kellis M (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 30:1095–1106. doi: 10.1038/nbt.2422 CrossRefGoogle Scholar
  38. 38.
    Welter D et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006. doi: 10.1093/nar/gkt1229 CrossRefGoogle Scholar
  39. 39.
    Wilk JB et al (2009) A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 5:e1000429CrossRefGoogle Scholar
  40. 40.
    Wüst RC, Degens H (2007) Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chronic Obstr Pulm Dis 2:289Google Scholar
  41. 41.
    Xu K, Moghal N, Egan SE (2012) Notch signaling in lung development and disease. In: Notch signaling in embryology and cancer. Springer, US, pp 89–98Google Scholar
  42. 42.
    Yang Y-S, Yang M-CW, Guo Y, Williams OW, Weissler JC (2009) PLAGL2 expression-induced lung epithelium damages at bronchiolar alveolar duct junction in emphysema: bNip3-and SP-C-associated cell death/injury activity. Am J Physiol Lung Cell Mol Physiol 297:L455–L466CrossRefGoogle Scholar
  43. 43.
    Zhou X et al (2012) Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 21:1325–1335. doi: 10.1093/hmg/ddr569 CrossRefGoogle Scholar
  44. 44.
    Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM (2013) Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med 188:941–947CrossRefGoogle Scholar

Copyright information

© International Chinese Statistical Association 2016

Authors and Affiliations

  • Qiongshi Lu
    • 1
  • Chentian Jin
    • 2
  • Jiehuan Sun
    • 1
  • Russell Bowler
    • 3
  • Katerina Kechris
    • 4
  • Naftali Kaminski
    • 5
  • Hongyu Zhao
    • 1
    • 6
    • 7
  1. 1.Department of BiostatisticsYale School of Public HealthNew HavenUSA
  2. 2.Yale CollegeNew HavenUSA
  3. 3.Department of MedicineNational Jewish HealthDenverUSA
  4. 4.Department of Biostatistics and InformaticsUniversity of Colorado DenverDenverUSA
  5. 5.Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenUSA
  6. 6.Program of Computational Biology and BioinformaticsYale UniversityNew HavenUSA
  7. 7.VA Cooperative Studies Program Coordinating CenterWest HavenUSA

Personalised recommendations