Skip to main content

Advertisement

Log in

Innovative Clinical Trial Designs

Toward a 21st-Century Health Care System

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Whereas the 20th-century health care system sometimes seemed to be inhospitable to and unmoved by experimental research, its inefficiency and unaffordability have led to reforms that foreshadow a new health care system. We point out certain opportunities and transformational needs for innovations in study design offered by the 21st-century health care system, and describe some innovative clinical trial designs and novel design methods to address these needs and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Am Med Assoc 288(23):2981–2997

    Article  Google Scholar 

  2. Appel L (2002) The verdict from ALLHAT—Thiazide diuretics are the preferred initial therapy for hypertension. J Am Med Assoc 288(23):3039–3042

    Article  Google Scholar 

  3. Arrow K, Auerbach A, Bertko J, Brownlee S, Casalino LP, Cooper J, Crosson FJ, Enthoven A, Falcone E, Feldman RC, Fuchs VR, Garber AM, Gold MR, Goldman D, Hadfield GK, Hall MA, Horwitz RI, Hooven M, Jacobson PD, Jost TS, Kotlikoff LJ, Levin J, Levine S, Levy R, Linscott K, Luft HS, Mashal R, McFadden D, Mechanic D, Meltzer D, Newhouse JP, Noll RG, Pietzsch JB, Pizzo P, Reischauer RD, Rosenbaum S, Sage W, Schaeffer LD, Sheen E, Silber M, Skinner J, Shortell SM, Thier SO, Tunis S, Wulsin L Jr, Yock P, Bin Nun G, Bryan S, Luxenburg O, van de Ven WPMM (2009) Toward a 21st-century health care system: recommendations for health care reform. Ann Intern Med 150(7):493–495

    Google Scholar 

  4. Atkinson A, Donev A (1996) Experimental designs optimally balanced for trend. Technometrics 38(4):333–341

    Article  MathSciNet  MATH  Google Scholar 

  5. Babb J, Rogatko A, Zacks S (1998) Cancer Phase I clinical trials: Efficient dose escalation with overdose control. Stat Med 17(10):1103–1120

    Article  Google Scholar 

  6. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ (2009) I-SPY 2: An adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100. doi:10.1038/clpt.2009.68

    Article  Google Scholar 

  7. Bartroff J, Lai TL (2008) Efficient adaptive designs with mid-course sample size adjustment in clinical trials. Stat Med 27(10):1593–1611. doi:10.1002/sim.3201

    Article  MathSciNet  Google Scholar 

  8. Bartroff J, Lai TL (2008) Generalized likelihood ratio statistics and uncertainty adjustments in efficient adaptive design of clinical trials. Seq Anal 27(3):254–276

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartroff J, Lai TL (2010) Approximate dynamic programming and its applications to the design of Phase I cancer trials. Stat Sci 25:245–257

    Article  MathSciNet  Google Scholar 

  10. Bartroff J, Lai TL (2010) Incorporating individual and collective ethics into Phase I cancer trial designs. Biometrics 67:596–603

    Article  Google Scholar 

  11. Bekele BN, Shen Y (2005) A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. Biometrics 61(2):344–354. doi:10.1111/j.1541-0420.2005.00314.x

    MathSciNet  MATH  Google Scholar 

  12. Bembom O, van der Laan MJ (2007) Statistical methods for analyzing sequentially randomized trials. J Natl Cancer Inst 99(21):1577–1582. doi:10.1093/jnci/djm185

    Article  Google Scholar 

  13. Berry D (2003) Statistical innovations in cancer research. In: Holland J, Frei T et al. (eds) Cancer medicine, 6th edn. BC Decker, London, pp 465–478

    Google Scholar 

  14. Berry D (2004) Bayesian statistics and the efficiency and ethics of clinical trials. Stat Sci 19(1):175–187. doi:10.1214/088342304000000044

    Article  MATH  Google Scholar 

  15. Berry D, Eick S (1995) Adaptive assignment versus balanced randomization in clinical trials: A decision analysis. Stat Med 14(3):231–246

    Article  Google Scholar 

  16. Braun T (2002) The bivariate continual reassessment method: Extending the CRM to phase I trials of two competing outcomes. Control Clin Trials 23(3):240–256

    Article  Google Scholar 

  17. Brooner R, Kidorf M, King V, Stoller K, Peirce J, Bigelow G, Kolodner K (2004) Behavioral contingencies improve counseling attendance in an adaptive treatment model. J Subst Abuse Treat 27(3):223–232. doi:10.1016/j.jsat.2004.07.005

    Article  Google Scholar 

  18. Bryant J, Day R (1995) Incorporating toxicity considerations into the design of two-stage phase II clinical trials. Biometrics 51(4):1372–1383. doi:10.2307/2533268

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng Y, Berry DA (2007) Optimal adaptive randomized designs for clinical trials. Biometrika 94(3):673–689. doi:10.1093/biomet/asm049

    Article  MathSciNet  MATH  Google Scholar 

  20. Committee for Medicinal Products for Human Use (CHMP) (2007) Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. European Medicines Agency, http://www.emea.europa.eu/pdfs/human/ewp/245902enadopted.pdf

  21. Cree IA, Kurbacher CM, Lamont A, Hindley AC, Love S, TCA Ovarian Cancer Trial Group (2007) A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician’s choice in patients with recurrent platinum-resistant ovarian cancer. Anti-Cancer Drugs 18(9):1093–1101

    Article  Google Scholar 

  22. Dawson R, Lavori PW (2008) Sequential causal inference: Application to randomized trials of adaptive treatment strategies. Stat Med 27(10):1626–1645. doi:10.1002/sim.3039

    Article  MathSciNet  Google Scholar 

  23. Dawson R, Green AI, Drake RE, McGlashan TH, Schanzer B, Lavori PW (2008) Developing and testing adaptive treatment strategies using substance-induced psychosis as an example. Psychopharmacol Bull 41(3):51–67

    Google Scholar 

  24. Dette H, Melas VB, Pepelyshev A (2004) Optimal designs for a class of nonlinear regression models. Ann Stat 32(5):2142–2167. doi:10.1214/009053604000000382

    Article  MathSciNet  MATH  Google Scholar 

  25. Dragalin V, Fedorov V (2006) Adaptive designs for dose-finding based on efficacy-toxicity response. J Stat Plan Inference 136(6):1800–1823. doi:10.1016/j.jspi.2005.08.005

    Article  MathSciNet  MATH  Google Scholar 

  26. Dragalin V, Fedorov V, Wu Y (2008) Adaptive designs for selecting drug combinations based on efficacy-toxicity response. J Stat Plan Inference 138(2):352–373. doi:10.1016/j.jspi.2007.06.017

    Article  MathSciNet  MATH  Google Scholar 

  27. Druker B (2006) Circumventing resistance to kinase-inhibitor therapy. N Engl J Med 354(24):2594–2596

    Article  Google Scholar 

  28. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MWN, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, IRIS Investigators (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  Google Scholar 

  29. Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684

    Google Scholar 

  30. Ellenberg S, Eisenberger M (1985) An efficient design for Phase III studies of combination chemotherapies. Cancer Treat Rep 69(10):1147–1154

    Google Scholar 

  31. Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York, translated from the Russian and edited by WJ Studden and EM Klimko, Probability and mathematical statistics, No 12

    Google Scholar 

  32. Fiore L, Brophy M, D’Avolio L, Conrad C, O’Neil G, Sabin T, Kaufman J, Hermos J, Swartz S, Liang M, Gaziano M, Lawler E, Ferguson R, Lew R, Doras G, Lavori P (2011) A point-of-care clinical trial comparing insulin administered using a sliding scale versus a weight-based regimen. Clin Trials 8:183–195. doi:10.1177/1740774511398368

    Article  Google Scholar 

  33. Food and Drug Administration Center for Drug Evaluation and Research (2010) Guidelines for industry: adaptive design clinical trials for drugs and biologics. Rockville, MD. URL http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf

  34. Freidlin B, McShane LM, Korn EL (2010) Randomized clinical trials with biomarkers: Design issues. J Natl Cancer Inst 102(3):152–160. doi:10.1093/jnci/djp477

    Article  Google Scholar 

  35. Gu M, Lai TL (1998) Repeated significance testing with censored rank statistics in interim analysis of clinical trials. Stat Sin 8(2):411–428

    MathSciNet  MATH  Google Scholar 

  36. Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB, Dakhil SR, Woda B, Fisher RI, Peterson BA, Horning SJ (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24(19):3121–3127. doi:10.1200/JCO.2005.05.1003

    Article  Google Scholar 

  37. Haines LM, Perevozskaya I, Rosenberger WF (2003) Bayesian optimal designs for Phase I clinical trials. Biometrics 59(3):591–600. doi:10.1111/1541-0420.00069

    Article  MathSciNet  MATH  Google Scholar 

  38. Huang X, Ning J, Li Y, Estey E, Issa JP, Berry DA (2009) Using short-term response information to facilitate adaptive randomization for survival clinical trials. Stat Med 28(12):1680–1689. doi:10.1002/sim.3578

    Article  MathSciNet  Google Scholar 

  39. Hunsberger S, Rubinstein L, Dancey J, Korn E (2005) Dose escalation trial designs based on a molecularly targeted endpoint. Stat Med 24(14):2171–2181. doi:10.1002/sim.2102

    Article  MathSciNet  Google Scholar 

  40. Inoue LYT, Thall PF, Berry DA (2002) Seamlessly expanding a randomized phase II trial to phase III. Biometrics 58(4):823–831. doi:10.1111/j.0006-341X.2002.00823.x

    Article  MathSciNet  MATH  Google Scholar 

  41. Ivanova A (2003) A new dose-finding design for bivariate outcomes. Biometrics 59(4):1001–1007. doi:10.1111/j.0006-341X.2003.00115.x

    Article  MathSciNet  MATH  Google Scholar 

  42. Ivanova A, Wang K (2006) Bivariate isotonic design for dose-finding with ordered groups. Stat Med 25(12):2018–2026. doi:10.1002/sim.2312

    Article  MathSciNet  Google Scholar 

  43. Karrison T, Huo D, Chappell R (2003) A group sequential, response-adaptive design for randomized clinical trials. Control Clin Trials 24(5):506–522. doi:10.1016/S0197-2456(03)00092-8

    Article  Google Scholar 

  44. Kay-Lambkin FJ, Baker AL, McKetin R, Lee N (2010) Stepping through treatment: Reflections on an adaptive treatment strategy among methamphetamine users with depression. Drug Alcohol Rev 29(5):475–482. doi:10.1111/j.1465-3362.2010.00203.x

    Article  Google Scholar 

  45. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev, Drug Discov 3:711–716. doi:10.1038/nrd1470

    Article  Google Scholar 

  46. Korn E (2004) Nontoxicity endpoints in phase I trial designs for targeted, non-cytotoxic agents. J Natl Cancer Inst 96(13):977–978. doi:10.1093/jnci/djh208

    Article  Google Scholar 

  47. Lai TL, Li W (2006) Confidence intervals in group sequential trials with random group sizes and applications to survival analysis. Biometrika 93(3):641–654

    Article  MathSciNet  MATH  Google Scholar 

  48. Lai TL, Shih MC (2004) Power, sample size and adaptation considerations in the design of group sequential clinical trials. Biometrika 91(3):507–528

    MathSciNet  MATH  Google Scholar 

  49. Lai TL, Shih MC, Su Z (2009) Tests and confidence intervals for secondary endpoints in sequential clinical trials. Biometrika 96:903–915. doi:10.1093/biomet/asp063

    Article  MathSciNet  MATH  Google Scholar 

  50. Lavori P, Dawson R (1998) Developing and comparing treatment strategies: An annotated portfolio of designs. Psychopharmacol Bull 34(1):13–18

    Google Scholar 

  51. Lavori P, Dawson R (2000) A design for testing clinical strategies: biased adaptive within-subject randomization. J R Stat Soc Ser A Stat 163(1):29–38

    Article  Google Scholar 

  52. Lavori PW, Dawson R (2004) Dynamic treatment regimes: Practical design considerations. Clin Trials 1(1):9–20

    Article  Google Scholar 

  53. Lavori PW, Dawson R (2008) Adaptive treatment strategies in chronic disease. Annu Rev Med 59:443–453. doi:10.1146/annurev.med.59.062606.122232

    Article  Google Scholar 

  54. Lavori P, Dawson R, Rush A (2000) Flexible treatment strategies in chronic disease: Clinical and research implications. Biol Psychiatry 48(6):605–614

    Article  Google Scholar 

  55. Lavori P, Rush A, Wisniewski S, Alpert J, Fava M, Kupfer D, Nierenberg A, Quitkin F, Sackeim H, Thase M, Trivedi M (2001) Strengthening clinical effectiveness trials: Equipoise-stratified randomization. Biol Psychiatry 50(10):792–801

    Article  Google Scholar 

  56. Ledford H (2010) Clinical drug tests adapted for speed. Nature 464(7293):1258. doi:10.1038/4641258a

    Article  Google Scholar 

  57. Lee J, Gu X, Liu S (2010) Bayesian adaptive randomization designs for targeted agent development. Clin Trials 7:574–583

    Article  Google Scholar 

  58. Liu A, Li Q, Yu K, Yuan V (2010) A threshold sample-enrichment approach in a clinical trial with heterogeneous subpopulations. Clin Trials 7(5):537–545

    Article  Google Scholar 

  59. LoRusso PM, Boerner SA, Seymour L (2010) An overview of the optimal planning, design, and conduct of phase I studies of new therapeutics. Clin Cancer Res 16(6):1710–1718. doi:10.1158/1078-0432.CCR-09-1993

    Article  Google Scholar 

  60. Luce BR, Kramer JM, Goodman SN, Connor JT, Tunis S, Whicher D, Schwartz JS (2009) Rethinking randomized clinical trials for comparative effectiveness research: The need for transformational change. Ann Intern Med 151(3):206–W45

    Google Scholar 

  61. Lunceford JK, Davidian M, Tsiatis AA (2002) Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials. Biometrics 58(1):48–57. doi:10.1111/j.0006-341X.2002.00048.x

    Article  MathSciNet  MATH  Google Scholar 

  62. Ma B, Britten C, Siu L (2002) Clinical trial designs for targeted agents. Hematol/oncol Clin North Am 16(5):1287–1305

    Article  Google Scholar 

  63. Maitournam A, Simon R (2005) On the efficiency of targeted clinical trials. Stat Med 24(3):329–339. doi:10.1002/sim.1975

    Article  MathSciNet  Google Scholar 

  64. Mandrekar SJ, Sargent DJ (2010) Predictive biomarker validation in practice: Lessons from real trials. Clin Trials 7, in press

  65. McKay J, Lynch K, Shepard D, Pettinati H (2005) The effectiveness of telephone-based continuing care for alcohol and cocaine dependence—24-month outcomes. Arch Gen Psychiatry 62(2):199–207

    Article  Google Scholar 

  66. Murphy S (2005) An experimental design for the development of adaptive treatment strategies. Stat Med 24(10):1455–1481. doi:10.1002/sim.2022

    Article  MathSciNet  Google Scholar 

  67. Murphy S, McKay J (2004) Adaptive treatment strategies: An emerging approach for improving treatment effectiveness. Clinical Science, the Newsletter of the Society for the Science of Clinical Psychology, Section III of the Division of Clinical Psychology of the American Psychological Association, Winter-Spring Issue, pp 7–13, URL http://sites.google.com/site/sscpwebsite/newsletters-1

  68. Murphy S, van der Laan M, Robins J (2001) Marginal mean models for dynamic regimes. J Am Stat Assoc 96(456):1410–1423. doi:10.1198/016214501753382327

    Article  MATH  Google Scholar 

  69. Murphy SA, Oslin DW, Rush AJ, Zhu J, MCATS (2007) Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology 32(2):257–262. doi:10.1038/sj.npp.1301241

    Article  Google Scholar 

  70. O’Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: A practical design for Phase 1 clinical trials in cancer. Biometrics 46(1):33–48. doi:10.2307/2531628

    Article  MathSciNet  MATH  Google Scholar 

  71. O’Quigley J, Hughes MD, Fenton T (2001) Dose-finding designs for HIV studies. Biometrics 57(4):1018–1029. doi:10.1111/j.0006-341X.2001.01018.x

    Article  MathSciNet  MATH  Google Scholar 

  72. Ratain MJ, Sargent DJ (2009) Optimising the design of Phase II oncology trials: The importance of randomisation. Eur J Cancer 45(2, Sp Iss SI):275–280. doi:10.1016/j.ejca.2008.10.029

    Article  Google Scholar 

  73. Rubin DB (2010) On the limitations of comparative effectiveness research. Stat Med 29(19):1991–1995. doi:10.1002/sim.3960

    Article  MathSciNet  Google Scholar 

  74. Rubinstein L, Crowley J, Ivy P, Leblanc M, Sargent D (2009) Randomized Phase II designs. Clin Cancer Res 15(6):1883–1890. doi:10.1158/1078-0432.CCR-08-2031

    Article  Google Scholar 

  75. Rush A, Fava M, Wisniewski S, Lavori P, Trivedi M, Sackeim H, Thase M, Nierenberg A, Quitkin F, Kashner T, Kupfer D, Rosenbaum J, Alpert J, Stewart J, McGrath P, Biggs M, Shores-Wilson K, Lebowitz B, Ritz L, Niederehe G, (STAR D Investigators Group) (2004) Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Control Clin Trials 25(1):119–142. doi:10.1016/S0197-2456(03)00112-0

    Article  Google Scholar 

  76. Simon RM (1989) Optimal two-stage designs for Phase II clinical trials. Control Clin Trials 10:1–10

    Article  Google Scholar 

  77. Simon RM (2004) An agenda for clinical trials: Clinical trials in the genomic era. Clin Trials 1(5):468–470. doi:10.1191/1740774504cn046xx. URL http://ctj.sagepub.com/content/1/5/468.short, http://ctj.sagepub.com/content/1/5/468.full.pdf+html

    Article  Google Scholar 

  78. Simon RM (2005) Development and validation of therapeutically relevant multi-gene biomarker classifiers. J Natl Cancer Inst 97(12):866–867. doi:10.1093/jnci/dji168. http://jnci.oxfordjournals.org/content/97/12/866.full.pdf+html

    Article  Google Scholar 

  79. Simon RM (2008) Development and validation of biomarker classifiers for treatment selection. J Stat Plan Inference 138(2):308–320. doi:10.1016/j.jspi.2007.06.010

    Article  MATH  Google Scholar 

  80. Simon RM (2010) Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Person Med 7(1):33–47. doi:10.2217/PME.09.49

    Article  Google Scholar 

  81. Storer B (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937

    Article  MathSciNet  MATH  Google Scholar 

  82. TenHave T, Coyne J, Salzer M, Katz I (2003) Research to improve the quality of care for depression: alternatives to the simple randomized clinical trial. Gen Hosp Psych 25(2):115–123. doi:10.1016/S0163-8343(02)00275-X

    Article  Google Scholar 

  83. Thall PF, Cook JD (2004) Dose-finding based on efficacy-toxicity trade-offs. Biometrics 60(3):684–693. doi:10.1111/j.0006-341X.2004.00218.x

    Article  MathSciNet  MATH  Google Scholar 

  84. Thall P, Russell K (1998) A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in phase I/II clinical trials. Biometrics 54(1):251–264

    Article  MATH  Google Scholar 

  85. Thall P, Simon R, Ellenberg S, Shrager R (1988) Optimal 2-stage designs for clinical trials with binary response. Stat Med 7(5):571–579

    Article  Google Scholar 

  86. Thall P, Millikan R, Sung H (2000) Evaluating multiple treatment courses in clinical trials. Stat Med 19(8):1011–1028

    Article  Google Scholar 

  87. Thall PF, Logothetis C, Pagliaro LC, Wen S, Brown MA, Williams D, Millikan RE (2007) Adaptive therapy for androgen-independent prostate cancer: A randomized selection trial of four regimens. J Natl Cancer Inst 99(21):1613–1622. doi:10.1093/jnci/djm189

    Article  Google Scholar 

  88. Thall PF, Nguyen HQ, Estey EH (2008) Patient-specific finding based on bivariate outcomes and covariates. Biometrics 64(4):1126–1136. doi:10.1111/j.1541-0420.2008.01009.x

    Article  MathSciNet  MATH  Google Scholar 

  89. Thompson W (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(Part 3/4):285–294

    MATH  Google Scholar 

  90. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, Traficante N, Fereday S, Hung JA, Chiew YE, Haviv L, Gertig D, deFazio A, Bowtel DDL, Australian Ovarian Cancer Study Group (2008) Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14(16):5198–5208. doi:10.1158/1078-0432.CCR-08-0196

    Article  Google Scholar 

  91. Tunis SR, Benner J, McClellan M (2010) Comparative effectiveness research: Policy context, methods development and research infrastructure. Stat Med 29(19):1963–1976. doi:10.1002/sim.3818

    Article  MathSciNet  Google Scholar 

  92. Unutzer J, Katon W, Williams J, Callahan C, Harpole L, Hunkeler E, Hoffing M, Arean P, Hegel M, Schoenbaum M, Oishi S, Langston C (2001) Improving primary care for depression in late life—The design of a multicenter randomized trial. Med Care 39(8):785–799

    Article  Google Scholar 

  93. Vickers AJ, Ballen V, Scher HI (2007) Setting the bar in phase II trials: The use of historical data for determining “go/no go” decision for definitive phase III testing. Clin Cancer Res 13(3):972–976. doi:10.1158/1078-0432.CCR-06-0909

    Article  Google Scholar 

  94. Von Hoff D, Turner J (1991) Response rates, duration of response, and dose response effects in phase I studies of antineoplastics. Invest New Drugs 9:115–122

    Google Scholar 

  95. Wahed AS (2010) Inference for two-stage adaptive treatment strategies using mixture distributions. J R Stat Soc, Ser C, Appl 59(Part 1):1–18

    Article  MathSciNet  Google Scholar 

  96. Wahed AS, Tsiatis AA (2004) Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomization designs in clinical trials. Biometrics 60(1):124–133. doi:10.1111/j.0006-341X.2004.00160.x

    Article  MathSciNet  MATH  Google Scholar 

  97. Whitehead J, Brunier H (1995) Bayesian decision procedures for dose determining experiments. Stat Med 14(9–10):885–893

    Article  Google Scholar 

  98. Wittes J, Brittain E (1990) The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med 9(1–2):65–72

    Article  Google Scholar 

  99. Wolbers M, Helterbrand JD (2008) Two-stage randomization designs in drug development. Stat Med 27(21):4161–4174. doi:10.1002/sim.3309

    Article  MathSciNet  Google Scholar 

  100. Yin G, Yuan Y (2009) Bayesian dose finding in oncology for drug combinations by copula regression. J R Stat Soc, Ser C, Appl Stat 58(2):211–224. doi:10.1111/j.1467-9876.2009.00649.x

    Article  MathSciNet  Google Scholar 

  101. Zhao Y, Kosorok MR, Zeng D (2009) Reinforcement learning design for cancer clinical trials. Stat Med 28(26):3294–3315. doi:10.1002/sim.3720

    Article  MathSciNet  Google Scholar 

  102. Zhou X, Liu S, Kim ES, Herbst RS, Lee JL (2008) Bayesian adaptive design for targeted therapy development in lung cancer—A step toward personalized medicine. Clin Trials 5(3):181–193. doi:10.1007/s12561-011-9042-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze L. Lai.

Additional information

T.L. Lai supported in part by NIH grant 1 P30 CA124435-01 and NSF grant DMS 0805879.

P.W. Lavori supported in part by NIH grant R01 MH051481 and clinical and translational science award 1 UL1 RR025744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, T.L., Lavori, P.W. Innovative Clinical Trial Designs. Stat Biosci 3, 145–168 (2011). https://doi.org/10.1007/s12561-011-9042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-011-9042-5

Keywords

Navigation