Skip to main content
Log in

Maximizing the Power of Genome-Wide Association Studies: A Novel Class of Powerful Family-Based Association Tests

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

For genome-wide association studies in family-based designs, a new, universally applicable approach is proposed. Using a modified Liptak’s method, we combine the p-value of the family-based association test (FBAT) statistic with the p-value for the Van Steen-statistic. The Van Steen-statistic is independent of the FBAT-statistic and utilizes information that is ignored by traditional FBAT-approaches. The new test statistic takes advantages of all available information about the genetic association, while, by virtue of its design, it achieves complete robustness against confounding due to population stratification. The approach is suitable for the analysis of almost any trait type for which FBATs are available, e.g. binary, continuous, time-to-onset, multivariate, etc. The efficiency and the validity of the new approach depend on the specification of a nuisance/tuning parameter and the weight parameters in the modified Liptak’s method. For different trait types and ascertainment conditions, we discuss general guidelines for the optimal specification of the tuning parameter and the weight parameters. Our simulation experiments and an application to an Alzheimer study show the validity and the efficiency of the new method, which achieves power levels that are comparable to those of population-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BMM, Hooli B, DiVito J, Ionita I, Jiang H, Laird NM, Moscarillo T, Ohlsen KL, Elliott K, Wang X, Hu-Lince D, Ryder M, Murphy A, Wagner SL, Blacker D, Becker KD, Tanzi RE (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632

    Article  Google Scholar 

  2. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, Cook EH, Fang JY, Song CY, Vitale R (2002) Association between a gabrb3 polymorphism and autism. Mol Psychiatry 7:311–316

    Article  Google Scholar 

  3. CAMP R (1999) The childhood asthma management program (CAMP): design, rationale, methods (1999): childhood asthmamanagement program research group. Control Clin Trials 20:91–120

    Article  Google Scholar 

  4. Chen WM, Abecasis GR (2007) Family-based association tests for genome-wide association scans. Am J Hum Genet 81:913–926

    Article  Google Scholar 

  5. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  MATH  Google Scholar 

  6. Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60:155–166

    Article  MATH  Google Scholar 

  7. Elston RC, Gray-McGuire C (2004) A review of the ‘statistical analysis for genetic epidemiology’ (S.A.G.E.) software package. Hum Genomics 1:456–459

    Google Scholar 

  8. Fisher RA (1950) Statistical methods for research workers, 11th edn. Oliver & Boyd, Edinburgh

    Google Scholar 

  9. Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 64:259–267

    Article  Google Scholar 

  10. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Bergs S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer’s disease. Arch Gen Psychiatry 63:168–174

    Article  Google Scholar 

  11. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R, Stone D, Schadt E, Karnoub M, Nowotny P, Tacey K, Catanese J, Sninsky J, Brayne C, Rubinsztein D, Gill M, Lawlor B, Lovestone S, Holmans P, O’Donovan M, Morris JC, Thal L, Goate A, Owen MJ, Williams J (2007) Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16:865–873

    Article  Google Scholar 

  12. Hensen P, Windemuth C, Huffmeier U, Ruschendorf F, Stadelmann A, Hoppe V, Fenneker D, Stander M, Schmitt-Egenolf M, Wienker TF, Traupe H, Reis A (2003) Association scan of the novel psoriasis susceptibility region on chromosome 19: evidence for both susceptible and protective loci. Exp Dermatol 12:490–496

    Article  Google Scholar 

  13. Ionita-Laza I, McQueen MB, Laird NM, Lange C (2007) Genome-wide weighted hypothesis testing in family-based association studies, with an application to a 100K scan. Am J Hum Genet 81:607–614

    Article  Google Scholar 

  14. Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene association studies. Nat Rev Genet 7:385–394

    Article  Google Scholar 

  15. Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19 Suppl 1:S36–S42

    Article  Google Scholar 

  16. Lange C, Laird NM (2002) On a general class of conditional tests for family-based association studies in genetics: the asymptotic distribution, the conditional power, and optimality considerations. Genet Epidemiol 23:165–180

    Article  Google Scholar 

  17. Lange C, DeMeo DL, Laird NM (2002) Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet 71:1330–1341

    Article  Google Scholar 

  18. Lange C, DeMeo DL, Silverman EK, Weiss ST, Laird NM (2003a) Using the noninformative families in family-based association tests: a powerful new testing strategy. Am J Hum Genet 73:801–811

    Article  Google Scholar 

  19. Lange C, Lyon H, DeMeo D, Raby B, Silverman EK, Weiss ST (2003b) A new powerful non-parametric two-stage approach for testing multiple phenotypes in family-based association studies. Hum Hered 56:10–17

    Article  Google Scholar 

  20. Lasky-Su J, Lyon HN, Emilsson V, Heid IM, Molony C, Raby BA, Lazarus R, Klanderman B, Soto-Quiros ME, Avila L, Silverman EK, Thorleifsson G, Thorsteinsdottir U, Kronenberg F, Vollmert C, Illig T, Fox CS, Levy D, Laird NM, Ding X, McQueen MB, Butler J, Ardlie K, Papoutsakis C, Dedoussis G, O’Donnell CJ, Wichmann HE, Celedon JC, Schadt E, Hirschhorn J, Weiss ST, Stefansson K, Lange C (2008) On the replication of genetic associations: timing can be everything. Am J Hum Genet 82:849–858

    Article  Google Scholar 

  21. Levin AM, Machiela MJ, Zuhlke KA, Ray AM, Cooney KA, Douglas JA (2008) Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 68:6492–6495

    Article  Google Scholar 

  22. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, King KS, Lovestone S, Loy-English I, Matthews PM, Owen MJ, Plumpton M, Pryse-Phillips W, Prinjha RK, Richardson JC, Saunders A, Slater AJ, St George-Hyslop PH, Stinnett SW, Swartz JE, Taylor RL, Wherrett J, Williams J, Yarnall DP, Gibson RA, Irizarry MC, Middleton LT, Roses AD (2008) Candidate single-nucleotide polymorphisms from a genome-wide association study of Alzheimer’s disease. Arch Neurol 65:45–53

    Article  Google Scholar 

  23. Liptak T (1958) On the combination of independent tests. Magyar Tud Akad Mat Kutatȯ Int Közl 3:171–197

    Google Scholar 

  24. Lyon H, Lange C, Lake S, Silverman EK, Randolph AG, Kwiatkowski D, Raby BA, Lazarus R, Weiland KM, Laird NM, Weiss ST (2004) IL10 gene polymorphisms are associated with asthma phenotypes in children. Genet Epidemiol 26:155–165

    Article  Google Scholar 

  25. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  Google Scholar 

  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Google Scholar 

  27. Qu H, Tessier M-C, Hudson TJ, Polychronakos C (2005) Confirmation of the association of the r620w polymorphism in the protein tyrosine phosphatase ptpn22 with type 1 diabetes in a family-based study. J Med Genet 42:266–270

    Article  Google Scholar 

  28. Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 50:211–223

    Article  Google Scholar 

  29. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, Joshipura KD, Pearson JV, Hu-Lince D, Huentelman MJ, Craig DW, Coon KD, Liang WS, Herbert RH, Beach T, Rohrer KC, Zhao AS, Leung D, Bryden L, Marlowe L, Kaleem M, Mastroeni D, Grover A, Heward CB, Ravid R, Rogers J, Hutton ML, Melquist S, Petersen RC, Alexander GE, Caselli RJ, Kukull W, Papassotiropoulos A, Stephan DA (2007) Gab2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 54:713–720

    Article  Google Scholar 

  30. Silverman EK, Kwiatkowski DJ, Sylvia JS, Lazarus R, Drazen JM, Lange C, Laird NM, Weiss ST (2003) Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. J Allergy Clin Immunol 112:870–876

    Article  Google Scholar 

  31. Smoller JW, Rosenbaum JF, Biederman J, Kennedy J, Dai D, Racette SR, Laird NM, Kagan J, Snidman N, Hirshfeld-Becker D, Tsuang MT, Sklar PB, Slaugenhaupt SA (2003) Association of a genetic marker at the corticotropin-releasing hormone locus with behavioral inhibition. Biol Psychiatry 54:1376–1381

    Article  Google Scholar 

  32. Smoller JW, Yamaki LH, Fagerness JA, Biederman J, Racette S, Laird NM, Kagan J, Snidman N, Faraone SV, Hirshfeld-Becker D, Tsuang MT, Slaugenhaupt SA, Rosenbaum JF, Sklar PB (2005) The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biol Psychiatry 57:1485–1492

    Article  Google Scholar 

  33. Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test. Am J Hum Genet 62:450–458

    Article  Google Scholar 

  34. Van Steen K, McQueen MB, Herbert A, Raby B, Lyon H, Demeo DL, Murphy A, Su J, Datta S, Rosenow C, Christman M, Silverman EK, Laird NM, Weiss ST, Lange C (2005) Genomic screening and replication using the same data set in family-based association testing. Nat Genet 37:683–691

    Article  Google Scholar 

  35. Won S, Morris N, Lu Q, Elston RC (2009) Choosing an optimal method to combine p-values. Stat Med 28:1537–1553

    Article  Google Scholar 

  36. Won S, Wilk JB, Mathias RA, O’Donnell CJ, Silverman EK, Barnes K, O’Connor GT, Weiss ST, Lange C (2009) On the analysis of genome-wide association studies in family-based designs: a universal, robust analysis approach and an application to four genome-wide association studies. Plos Genet, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, S., Bertram, L., Becker, D. et al. Maximizing the Power of Genome-Wide Association Studies: A Novel Class of Powerful Family-Based Association Tests. Stat Biosci 1, 125–143 (2009). https://doi.org/10.1007/s12561-009-9016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-009-9016-z

Navigation