Skip to main content

Advertisement

Log in

Retention of Virus Versus Surrogate, by Ultrafiltration in Seawater: Case Study of Norovirus Versus Tulane

  • Review
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

In the field of chemical engineering and water treatment, the study of viruses, included surrogates, is well documented. Often, surrogates are used to study viruses and their behavior because they can be produced in larger quantities in safer conditions and are easier to handle. In fact, surrogates allow studying microorganisms which are non-infectious to humans but share some properties similar to pathogenic viruses: structure, composition, morphology, and size. Human noroviruses, recognized as the leading cause of epidemics and sporadic cases of gastroenteritis across all age groups, may be mimicked by the Tulane virus. The objectives of this work were to study (i) the ultrafiltration of Tulane virus and norovirus to validate that Tulane virus can be used as a surrogate for norovirus in water treatment process and (ii) the retention of norovirus and the surrogate as a function of water quality to better understand the use of the latter pathogenic viruses. Ultrafiltration tests showed significant logarithmic reduction values (LRV) in viral RNA: around 2.5 for global LRV (i.e., based on the initial and permeate average concentrations) and between 2 and 6 for average LRV (i.e., retention rate considering the increase of viral concentration in the retentate), both for norovirus and the surrogate Tulane virus. Higher reduction rates (from 2 to 6 log genome copies) are obtained for higher initial concentrations (from 101 to 107 genome copies per mL) due to virus aggregation in membrane lumen. Tulane virus appears to be a good surrogate for norovirus retention by membrane processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altintas, Z., Gittens, M., Pocock, J., & Tothill, I. E. (2015). Biosensors for waterborne viruses: Detection and removal. Biochimie, 115, 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Antony, A., Blackbeard, J., & Leslie, G. (2012). Removal efficiency and integrity monitoring techniques for virus removal by membrane processes. Critical Reviews in Environment Science and Technology, 42, 891–933.

    Article  Google Scholar 

  • Arenillas, S., Drouin, M., Monnin, E., & Moulin, P. (2017). Glycerin removal from ultrafiltration flat sheet membranes by filtration and soaking. Journal of Membrane Science and Research, 3, 102–108. https://doi.org/10.22079/jmsr.2016.23080

    Article  Google Scholar 

  • Atmar, R. L., Ramani, S., & Estes, M. K. (2018). Human noroviruses: Recent advances in a 50-year history. Current Opinion in Infectious Diseases, 31, 422–432.

    Article  PubMed  Google Scholar 

  • Barnes, C., Barber, R., Schneider, K. R., Danyluk, M. D., Wright, A. C., Jones, M. K., & Montazeri, N. (2021). Application of chitosan microparticles against human norovirus. Journal of Food Protection, 84, 2092–2098. https://doi.org/10.4315/JFP-21-220

    Article  PubMed  Google Scholar 

  • Bartsch, C., Plaza-Rodriguez, C., Trojnar, E., Filter, M., & Johne, R. (2019). Predictive models for thermal inactivation of human norovirus and surrogates in strawberry puree. Food Control, 1(96), 87–97.

    Article  Google Scholar 

  • Choi, S., Drese, J. H., Eisenberger, P. M., & Jones, C. W. (2011). Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environmental Science and Technology, 45(6), 2420–2427. https://doi.org/10.1021/es102797w

    Article  CAS  PubMed  Google Scholar 

  • Cordier, C., Charpin, L., Stavrakakis, C., Papin, M., Guyomard, K., Sauvade, P., Coelho, F., & Moulin, P. (2019a). Ultrafiltration: A solution to recycle the breeding waters in shellfish production. Aquaculture, 504, 30–38. https://doi.org/10.1016/j.aquaculture.2019.01.045

    Article  CAS  Google Scholar 

  • Cordier, C., Stavrakakis, C., Dupuy, B., Papin, M., Sauvade, P., Coelho, F., & Moulin, P. (2019b). Ultrafiltration for environment safety in shellfish production: Removal of oyster gametes in hatchery effluents. Aquacultural Engineering, 84, 80–90. https://doi.org/10.1016/j.aquaeng.2018.12.008

    Article  Google Scholar 

  • Cordier, C., Guyomard, K., Stavrakakis, C., Sauvade, P., Coelho, F., & Moulin, P. (2020a). Culture of microalgae with ultrafiltered seawater: A feasibility study. SciMedicine. https://doi.org/10.28991/SciMedJ-2020-0202-2

    Article  Google Scholar 

  • Cordier, C., Stavrakakis, C., Charpin, L., Papin, M., Guyomard, K., Sauvade, P., Coelho, F., & Moulin, P. (2020b). Ultrafiltration to produce pathogen free water in shellfish farms. Water Today, 4, 28.

    Google Scholar 

  • Cordier, C., Stavrakakis, C., Morga, B., Degrémont, L., Voulgaris, A., Bacchi, A., Sauvade, P., Coelho, F., & Moulin, P. (2020c). Removal of pathogens by ultrafiltration from sea water. Environment International, 142, 105809. https://doi.org/10.1016/j.envint.2020.105809

    Article  PubMed  Google Scholar 

  • Cordier, C., Stavrakakis, C., Morga, B., Degrémont, L., Voulgaris, A., Bacchi, A., Moulin, P. (2020d). Removal of pathogens for aquaculture applications by ultrafiltration. World Aquaculture Magazine.

  • Cordier, C., Stavrakakis, C., Sauvade, P., Coelho, F., & Moulin, P. (2018). Air backwash efficiency on organic fouling of UF membranes applied to shellfish hatchery effluents. Membranes, 8, 48. https://doi.org/10.3390/membranes8030048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordier, C., Voulgaris, A., Stavrakakis, C., Sauvade, P., Coelho, F., & Moulin, P. (2021). Ultrafiltration for environmental safety in shellfish production: A case of bloom emergence. Water Science and Engineering, 14, 46–53. https://doi.org/10.1016/j.wse.2021.03.003

    Article  Google Scholar 

  • Cromeans, T., Park, G. W., Costantini, V., Lee, D., Wang, Q., Farkas, T., Lee, A., & Vinjé, J. (2014). Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Applied and Environment Microbiology, 80, 5743–5751. https://doi.org/10.1128/aem.01532-14

    Article  Google Scholar 

  • Cruz, M. C., Romero, L. C., Vicente, M. S., & Rajal, V. B. (2017). Statistical approaches to understanding the impact of matrix composition on the disinfection of water by ultrafiltration. Chemical Engineering Journal, 316, 305–314. https://doi.org/10.1016/j.cej.2017.01.081

    Article  CAS  Google Scholar 

  • Desdouits, M., Polo, D., Le Mennec, C., Strubbia, S., Zeng, X.-L., Ettayebi, K., Atmar, R. L., Estes, M. K., & Le Guyader, F. S. (2022). Use of Human Intestinal Enteroids to Evaluate Persistence of Infectious Human Norovirus in Seawater. Emerging Infectious Diseases, 28, 1475–1479. https://doi.org/10.3201/eid2807.220219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desselberger, U. (2019). Caliciviridae Other than Noroviruses. Viruses, 11, 286. https://doi.org/10.3390/v11030286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCaprio, E., Phantkankum, N., Culbertson, D., Ma, Y., Hughes, J. H., Kingsley, D., Uribe, R. M., & Li, J. (2016). Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation. International Journal of Food Microbiology., 2(232), 43–51.

    Article  Google Scholar 

  • DiCaprio, E., Ye, M., Chen, H., & Li, J. (2019). Inactivation of human norovirus and Tulane virus by high pressure processing in simple mediums and strawberry puree. Frontiers in Sustainable Food Systems., 30(3), 26.

    Article  Google Scholar 

  • Dishari, S. K., Micklin, M. R., Sung, K.-J., Zydney, A. L., Venkiteshwaran, A., & Earley, J. N. (2015). Effects of solution conditions on virus retention by the Viresolve® NFP filter. Biotechnology Progress, 31, 1280–1286. https://doi.org/10.1002/btpr.2125

    Article  CAS  PubMed  Google Scholar 

  • Drouaz, N., Schaeffer, J., Farkas, T., Pendu, J. L., & Guyader, F. S. L. (2015). Tulane virus as a potential surrogate to mimic norovirus behavior in oysters. Applied and Environment Microbiology, 81, 5249–5256. https://doi.org/10.1128/AEM.01067-15

    Article  CAS  Google Scholar 

  • ElHadidy, A. M., Peldszus, S., & Van Dyke, M. I. (2013). An evaluation of virus removal mechanisms by ultrafiltration membranes using MS2 and φX174 bacteriophage. Separation and Purification Technology, 120, 215–223. https://doi.org/10.1016/j.seppur.2013.09.026

    Article  CAS  Google Scholar 

  • Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., et al. (2016). Replication of human noroviruses in stem cell – Derived human enteroids. Science. https://doi.org/10.1126/science.aaf5211

    Article  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority. (2019). Analysis of the European baseline survey of norovirus in oysters. EFSA Journal, 17, e05762.

    Google Scholar 

  • Farkas, T. (2015). Rhesus enteric calicivirus surrogate model for human norovirus gastroenteritis. Journal of General Virology, 96, 1504–1514. https://doi.org/10.1099/jgv.0.000020

    Article  CAS  PubMed  Google Scholar 

  • Farkas, T., Sestak, K., Wej, C., & Jiang, X. (2008). Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. Journal of Virology, 82(11), 5408–5416. https://doi.org/10.1128/JVI.00070-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer, O., Casas, S., Galvañ, C., Lucena, F., Bosch, A., Galofré, B., Mesa, J., Jofre, J., & Bernat, X. (2015). Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis. Water Research, 83, 121–131. https://doi.org/10.1016/j.watres.2015.06.039

    Article  CAS  PubMed  Google Scholar 

  • Frohnert, A., Kreißel, K., Lipp, P., Dizer, H., Hambsch, B., Szewzyk, R., & Selinka, H.-C. (2015). Removal of surrogate bacteriophages and enteric viruses from seeded environmental waters using a semi-technical ultrafiltration unit. Food Environ Virol. https://doi.org/10.1007/s12560-015-9190-8

    Article  PubMed  Google Scholar 

  • Gentile, G. J., Cruz, M. C., Rajal, V. B., & Fidalgo de Cortalezzi, M. M. (2018). Electrostatic interactions in virus removal by ultrafiltration membranes. Journal of Environmental Chemical Engineering, 6, 1314–1321. https://doi.org/10.1016/j.jece.2017.11.041

    Article  CAS  Google Scholar 

  • Grabow, W. O. K. (2001). Bacteriophages : update on application as models for viruses in water. Water, 27, 251–268. https://doi.org/10.10520/EJC115944

    Article  Google Scholar 

  • Hamza, I. A., Jurzik, L., Stang, A., Sure, K., Uberla, K., & Wilhelm, M. (2009). Detection of human viruses in rivers of a densly-populated area in Germany using a virus adsorption elution method optimized for PCR analyses. Water Research, 43, 2657–2668. https://doi.org/10.1016/j.watres.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  • Hirneisen, K. A., & Kniel, K. E. (2013). Comparing human norovirus surrogates: Murine norovirus and Tulane virus. Journal of Food Protection, 76, 139–143. https://doi.org/10.4315/0362-028X.JFP-12-216

    Article  PubMed  Google Scholar 

  • Huang, H., Young, T. A., Schwab, K. J., & Jacangelo, J. G. (2012). Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. Journal of Membrane Science, 409–410, 1–8. https://doi.org/10.1016/j.memsci.2011.12.050

    Article  CAS  Google Scholar 

  • ISO 15216–1: 2017. Microbiology of the food chain - Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR – Part 1: Method for quantification, International Organization for Standardization. International Organization for Standardization.

  • ISO 13528:2015. Statistical methods for use in proficiency testing by interlaboratory comparison. International Organization for Standardization.

  • Jacangelo, J. G., Adham, S. S., & Laîné, J.-M. (1995). Mechanism of Cryptosporidium, Giardia, and MS2 virus removal by MF and UF. Journal AWWA, 87, 107–121. https://doi.org/10.1002/j.1551-8833.1995.tb06427.x

    Article  CAS  Google Scholar 

  • Jacquet, N., Wurtzer, S., Darracq, G., Wyart, Y., Moulin, L., & Moulin, P. (2021). Effect of concentration on virus removal for ultrafiltration membrane in drinking water production. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2021.119417

    Article  Google Scholar 

  • Kniel, K. E. (2014). The makings of a good human norovirus surrogate. Current Option of Virology, 4, 85–90. https://doi.org/10.1016/j.coviro.2014.01.002

    Article  Google Scholar 

  • Langlet, J., Ogorzaly, L., Schrotter, J.-C., Machinal, C., Gaboriaud, F., Duval, J. F. L., & Gantzer, C. (2009). Efficiency of MS2 phage and Qβ phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method. Journal of Membrane Science, 326, 111–116. https://doi.org/10.1016/j.memsci.2008.09.044

    Article  CAS  Google Scholar 

  • Lanrewaju, A. A., Enitan-Folami, A. M., Sabiu, S., & Swalaha, F. M. (2022). A review on disinfection methods for inactivation of waterborne viruses. Frontiers in Microbiology, 13, 991856. https://doi.org/10.3389/fmicb.2022.991856

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S., Hata, A., Yamashita, N., & Tanaka, H. (2017). Evaluation of virus reduction by ultrafiltration with coagulation-sedimentation in water reclamation. Food Environ Virol, 9, 453–463. https://doi.org/10.1007/s12560-017-9301-9

    Article  PubMed  Google Scholar 

  • LeHir, M., Wyart, Y., Georges, G., Siozade, L., & Moulin, P. (2018). Nanoparticles retention potential of multichannel hollow fiber drinking water production membrane. Journal of Membrane Science and Research, 4, 74–84. https://doi.org/10.22079/JMSR.2017.69079.1150

    Article  CAS  Google Scholar 

  • Lénès, D., Deboosere, N., Ménard-Szczebara, F., Jossent, J., Alexandre, V., Machinal, C., & Vialette, M. (2010). Assessment of the removal and inactivation of influenza viruses H5N1 and H1N1 by drinking water treatment. Water Research, 44, 2473–2486. https://doi.org/10.1016/j.watres.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Ye, M., Neetoo, H., Golovan, S., & Chen, H. (2013). Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. International Journal of Food Microbiology, 162(1), 37–42. https://doi.org/10.1016/j.ijfoodmicro.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  • Maalouf, H., Pommepuy, M., & Le Guyader, F. S. (2010). Environmental conditions leading to shellfish contamination and related outbreaks. Food and Environmental Virology, 2, 136–145. https://doi.org/10.1007/s12560-010-9043-4

    Article  Google Scholar 

  • Martin, I., Schaal, H., Scheid, A., & Ruysschaert, J-M. (1996). Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determinedby its orientation in the lipid bilayer. Journal of Virology, 70, 298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita, T., Shirasaki, N., Tatsuki, Y., & Matsui, Y. (2013). Investigating norovirus removal by microfiltration, ultrafiltration, and precoagulation-microfiltration processes using recombinant norovirus virus-like particles and real-time immuno-PCR. Water Research, 47, 5819–5827. https://doi.org/10.1016/j.watres.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • McLeod, C., Polo, D., Le Saux, J.-C., & Le Guyader, F. S. (2017). Depuration and relaying: A review on potential removal of norovirus from oysters. Comprehensive Reviews in Food Science and Food Safety, 16, 692–706. https://doi.org/10.1111/1541-4337.12271

    Article  CAS  PubMed  Google Scholar 

  • Morales-Morales, H. A., Vidal, G., Olszewski, J., Rock, C. M., Dasgupta, D., Oshima, K. H., & Smith, G. B. (2003). Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Applied and Environment Microbiology, 69, 4098–4102. https://doi.org/10.1128/AEM.69.7.4098-4102.2003

    Article  CAS  Google Scholar 

  • NF U47-600-2 :2015.: Méthodes d’analyse en santé animale - PCR (réaction de polymérisation en chaîne) - Part 2 : Exigences et recommandations pour le développement et la validation de la PCR en santé animale. AFNOR, France

  • Ollivier, J., Lowther, J., Desdouits, M., Schaeffer, J., Wacrenier, C., Oude Munnink, B. B., Besnard, A., Mota Batista, F., Stapleton, T., Schultz, A. C., Aarestrup, F., Koopmans, M., de Graaf, M., & Le Guyader, S. (2022). Application of next generation sequencing on norovirus-contaminated oyster samples. EFSA Supporting Publications, 19, 7348E. https://doi.org/10.2903/sp.efsa.2022.EN-7348

    Article  CAS  Google Scholar 

  • Oshima, K. H. (2001). Efficient and predictable recovery of viruses and cryptosporidium parvum oocysts from water by ultrafiltration systems. New Mexico State University.

    Google Scholar 

  • Otaki, M., Yano, K., & Ohgaki, S. (1998). Virus removal in a membrane separation process. Water Science and Technology, 37, 107–116.

    Article  CAS  Google Scholar 

  • Polo, D., Schaeffer, J., Teunis, P., Buchet, V., & Le Guyader, F. S. (2018). Infectivity and RNA persistence of a norovirus surrogate, the Tulane virus, in oysters. Frontiers in Microbiology, 9, 716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontius, F. W., Amy, G. L., & Hernandez, M. T. (2009). Fluorescent microspheres as virion surrogates in low-pressure membrane studies. Journal of Membrane Science, 335, 43–50.

    Article  CAS  Google Scholar 

  • Recker, J. D., & Li, X. (2020). Evaluation of copper alloy surfaces for inactivation of Tulane virus and human noroviruses. Journal of Food Protection., 83(10), 1782–1788.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, N. J. (2023). Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? Science of the Total Environment, 874, 162380. https://doi.org/10.1016/j.scitotenv.2023.162380

    Article  CAS  PubMed  Google Scholar 

  • Samandoulgou, I., Fliss, I., & Jean, J. (2021). Adhesion of norovirus to surfaces: Contribution of thermodynamic and molecular properties using virus-like particles. Food Environ. Viro., 13(3), 368–379. https://doi.org/10.1007/s12560-021-09471-3

    Article  CAS  Google Scholar 

  • Sano, D., Amarasiri, M., Hata, A., Watanabe, T., & Katayama, H. (2016). Risk management of viral infectious diseases in wastewater reclamation and reuse: Review. Environment International, 91, 220–229. https://doi.org/10.1016/j.envint.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasaki, N., Matsushita, T., Matsui, Y., & Murai, K. (2017). Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses. Water Research, 115, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair, R. G., Jones, E. L., & Gerba, C. P. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology, 107, 1769–1780.

    Article  CAS  PubMed  Google Scholar 

  • Taligrot, H., Monnot, M., Ollivier, J., Cordier, C., Jacquet, N., Vallade, E., Garry, P., Stravakakis, C., Le Guyader, F. S., & Moulin, P. (2022). Retention of the Tulane virus, a norovirus surrogate, by ultrafiltration in seawater and production systems. Aquaculture, 553, 738096. https://doi.org/10.1016/j.aquaculture.2022.738096

    Article  Google Scholar 

  • Urase, T., Yamamoto, K., & Ohgaki, S. (1996). Effect of pore structure of membranes and module configuration on virus retention. Journal of Membrane Science, 115, 21–29.

    Article  CAS  Google Scholar 

  • Wang, W. K. (2001). Membrane separations in biotechnology. CRC Press.

    Book  Google Scholar 

  • Wang, Z., Jung, S., Yeo, D., Woo, S., Seo, Y., Hossain, M. I., Kwon, H., Jeong, M.-I., & Choi, C. (2022). Combination of paper membrane-based filtration and ultrafiltration to enhance the detection of MNV, HAV, and HCoV from soil-rich post-washing water. Iscience, 25, 105640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winona, L. J., Ommani, A. W., Olszewski, J., Nuzzo, J. B., & Oshima, K. H. (2001). Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems. Canadian Journal of Microbiology, 47, 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  • Woodall, C. J. (2009). Waterborne diseases–What are the primary killers? Desalination, 248, 616–621.

    Article  CAS  Google Scholar 

  • Wu, Q., Zhang, X., & Cao, G. (2018). Impacts of sodium hydroxide and sodium hypochlorite aging on polyvinylidene fluoride membranes fabricated with different methods. Journal of Environmental Sciences, 67, 294–308. https://doi.org/10.1016/j.jes.2017.07.014

    Article  CAS  Google Scholar 

  • Younger, A. D., Neish, A., Walker, D. I., Jenkins, K. L., Lowther, J. A., Stapleton, T. A., & Alves, M. T. (2020). Strategies to reduce norovirus (NoV) contamination from oysters under depuration conditions. Food and Chemical Toxicology, 143, 111509. https://doi.org/10.1016/j.fct.2020.111509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project leading to this publication has received funding from FEAMP (APINOV N° FPEA470019FA1000001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CS, PG, FSLG, PM; Methodology: JO, MM, PM; Validation: FSLG, PM; Formal analysis: HT, MM, JO; Investigation: MM, HT, JO, PG, PM; Writing—Original Draft:PM; Writing—Review & Editing: MM, JO, HT, PG, CC, CS, FSLG; Supervision: PG, FSLE, PM; Project administration:PG-PM; Funding acquisition: PG, PM, FLSG, CS.

Corresponding author

Correspondence to P. Moulin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monnot, M., Ollivier, J., Taligrot, H. et al. Retention of Virus Versus Surrogate, by Ultrafiltration in Seawater: Case Study of Norovirus Versus Tulane. Food Environ Virol 16, 14–24 (2024). https://doi.org/10.1007/s12560-023-09574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-023-09574-z

Keywords

Navigation