Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A., & Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Applied and Environment Microbiology, 74(20), 6230–6238. https://doi.org/10.1128/aem.01465-08.
CAS
Article
Google Scholar
Adiputra, J., Jarugula, S., & Naidu, R. A. (2019). Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4. Virology Journal, 16(1), 139. https://doi.org/10.1186/s12985-019-1243-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adriaenssens, E. M., & Cowan, D. A. (2014). Using signature genes as tools to assess environmental viral ecology and diversity. Applied and Environment Microbiology, 80(15), 4470–4480. https://doi.org/10.1128/aem.00878-14.
Article
Google Scholar
Ahamed, S. T., Roy, B., Basu, U., Dutta, S., Ghosh, A. N., Bandyopadhyay, B., et al. (2019). Genomic and proteomic characterizations of Sfin-1, a novel lytic phage infecting multidrug-resistant Shigella spp. and Escherichia coli C. Frontiers of Microbiology, 10, 1876. https://doi.org/10.3389/fmicb.2019.01876.
Article
Google Scholar
Akmal, M., Rahimi-Midani, A., Hafeez-Ur-Rehman, M., Hussain, A., & Choi, T. J. (2020). Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens. https://doi.org/10.3390/pathogens9030215.
Article
PubMed
PubMed Central
Google Scholar
Aksyuk, A. A., Leiman, P. G., Kurochkina, L. P., Shneider, M. M., Kostyuchenko, V. A., Mesyanzhinov, V. V., et al. (2009). The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO Journal, 28(7), 821–829. https://doi.org/10.1038/emboj.2009.36.
CAS
Article
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2.
CAS
Article
PubMed
Google Scholar
Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., et al. (2016). PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Research, 44(W1), W16-21. https://doi.org/10.1093/nar/gkw387.
CAS
Article
PubMed
PubMed Central
Google Scholar
Auzat, I., Dröge, A., Weise, F., Lurz, R., & Tavares, P. (2008). Origin and function of the two major tail proteins of bacteriophage SPP1. Molecular Microbiology, 70(3), 557–569. https://doi.org/10.1111/j.1365-2958.2008.06435.x.
CAS
Article
PubMed
Google Scholar
Bailly-Bechet, M., Vergassola, M., & Rocha, E. (2007). Causes for the intriguing presence of tRNAs in phages. Genome Research, 17(10), 1486–1495. https://doi.org/10.1101/gr.6649807.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baker, J., Limberger, R., Schneider, S. J., & Campbell, A. (1991). Recombination and modular exchange in the genesis of new lambdoid phages. A New Biology, 3(3), 297–308.
CAS
Google Scholar
Bandelt, H. J., & Dress, A. W. (1992). Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1(3), 242–252. https://doi.org/10.1016/1055-7903(92)90021-8.
CAS
Article
PubMed
Google Scholar
Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2), 185–230. https://doi.org/10.1128/cmr.00059-12.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bedford, E., Tabor, S., & Richardson, C. C. (1997). The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 479–484. https://doi.org/10.1073/pnas.94.2.479.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bielke, L., Higgins, S., Donoghue, A., Donoghue, D., & Hargis, B. M. (2007). Salmonella host range of bacteriophages that infect multiple genera. Poultry Science, 86(12), 2536–2540. https://doi.org/10.3382/ps.2007-00250.
CAS
Article
PubMed
Google Scholar
Black, L. W., Showe, M. K., & Steven, A. C. (1994). Morphogenesis of the T4 head. In J. D. Karam (Ed.), Molecular biology of bacteriophage T4 (pp. 218–258). Washington, DC: American Society for Microbiology.
Google Scholar
Blokesch, M., & Schoolnik, G. K. (2008). The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. Journal of Bacteriology, 190(21), 7232–7240. https://doi.org/10.1128/jb.00959-08.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bobay, L. M., & Ochman, H. (2017). Impact of recombination on the base composition of bacteria and archaea. Molecular Biology and Evolution, 34(10), 2627–2636. https://doi.org/10.1093/molbev/msx189.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bobay, L. M., Rocha, E. P., & Touchon, M. (2013a). The adaptation of temperate bacteriophages to their host genomes. Molecular Biology and Evolution, 30(4), 737–751. https://doi.org/10.1093/molbev/mss279.
CAS
Article
PubMed
Google Scholar
Bobay, L. M., Touchon, M., & Rocha, E. P. (2013b). Manipulating or superseding host recombination functions: A dilemma that shapes phage evolvability. PLoS Genetics, 9(9), e1003825. https://doi.org/10.1371/journal.pgen.1003825.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bollyky, P. L., & Secor, P. R. (2019). The innate sense of bacteriophages. Cell Host & Microbe, 25(2), 177–179. https://doi.org/10.1016/j.chom.2019.01.020.
CAS
Article
Google Scholar
Boni, M. F., Posada, D., & Feldman, M. W. (2007). An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics, 176(2), 1035–1047. https://doi.org/10.1534/genetics.106.068874.
CAS
Article
PubMed
PubMed Central
Google Scholar
Born, Y., Knecht, L. E., Eigenmann, M., Bolliger, M., Klumpp, J., & Fieseler, L. (2019). A major-capsid-protein-based multiplex PCR assay for rapid identification of selected virulent bacteriophage types. Archives of Virology, 164(3), 819–830. https://doi.org/10.1007/s00705-019-04148-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bouchard, J. D., & Moineau, S. (2000). Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology, 270(1), 65–75. https://doi.org/10.1006/viro.2000.0226.
CAS
Article
PubMed
Google Scholar
Boyd, E. F. (2012). Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Advances in Virus Research, 82, 91–118. https://doi.org/10.1016/b978-0-12-394621-8.00014-5.
CAS
Article
PubMed
Google Scholar
Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., et al. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5, 8365. https://doi.org/10.1038/srep08365.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brown-Jaque, M., Calero-Cáceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1–7. https://doi.org/10.1016/j.plasmid.2015.01.001.
CAS
Article
PubMed
Google Scholar
Bruen, T. C., Philippe, H., & Bryant, D. (2006). A simple and robust statistical test for detecting the presence of recombination. Genetics, 172(4), 2665–2681. https://doi.org/10.1534/genetics.105.048975.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brüssow, H., & Hendrix, R. W. (2002). Phage genomics: Small is beautiful. Cell, 108(1), 13–16. https://doi.org/10.1016/s0092-8674(01)00637-7.
Article
PubMed
Google Scholar
Cangi, N., Gordon, J. L., Bournez, L., Pinarello, V., Aprelon, R., Huber, K., et al. (2016). Recombination is a major driving force of genetic diversity in the Anaplasmataceae. Frontiers in Cellular and Infection Microbiology, 6, 111. https://doi.org/10.3389/fcimb.2016.00111.
CAS
Article
PubMed
PubMed Central
Google Scholar
Casjens, S. R. (2005). Comparative genomics and evolution of the tailed-bacteriophages. Current Opinion in Microbiology, 8(4), 451–458. https://doi.org/10.1016/j.mib.2005.06.014.
CAS
Article
PubMed
Google Scholar
Casjens, S. R., & Thuman-Commike, P. A. (2011). Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology, 411(2), 393–415. https://doi.org/10.1016/j.virol.2010.12.046.
CAS
Article
PubMed
Google Scholar
Cernooka, E., Rumnieks, J., Tars, K., & Kazaks, A. (2017). Structural basis for DNA recognition of a single-stranded DNA-binding protein from enterobacter phage Enc34. Sci Rep, 7(1), 15529. https://doi.org/10.1038/s41598-017-15774-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chaturongakul, S., & Ounjai, P. (2014). Phage-host interplay: Examples from tailed phages and Gram-negative bacterial pathogens. Frontiers in Microbiology, 5, 442. https://doi.org/10.3389/fmicb.2014.00442.
Article
PubMed
PubMed Central
Google Scholar
Cherepanov, A., Yildirim, E., & de Vries, S. (2001). Joining of short DNA oligonucleotides with base pair mismatches by T4 DNA ligase. Journal of Biochemistry, 129(1), 61–68. https://doi.org/10.1093/oxfordjournals.jbchem.a002837.
CAS
Article
PubMed
Google Scholar
Ciarrocchi, G., Lestingi, M., Wright, G., & Montecucco, A. (1993). Bacteriophage T4 and human type I DNA ligases relax DNA under joining conditions. Nucleic Acids Research, 21(25), 5934–5939. https://doi.org/10.1093/nar/21.25.5934.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cicin-Sain, L., Podlech, J., Messerle, M., Reddehase, M. J., & Koszinowski, U. H. (2005). Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. Journal of Virology, 79(15), 9492–9502. https://doi.org/10.1128/jvi.79.15.9492-9502.2005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., & Wyżewski, Z. (2017). Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Current Microbiology, 74(2), 277–283. https://doi.org/10.1007/s00284-016-1166-x.
CAS
Article
PubMed
Google Scholar
Costa, A. R., Monteiro, R., & Azeredo, J. (2018). Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Scientific Reports, 8(1), 15346. https://doi.org/10.1038/s41598-018-33800-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cui, Z., Guo, X., Dong, K., Zhang, Y., Li, Q., Zhu, Y., et al. (2017). Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Scientific Reports, 7, 41259. https://doi.org/10.1038/srep41259.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cumby, N., Reimer, K., Mengin-Lecreulx, D., Davidson, A. R., & Maxwell, K. L. (2015). The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Molecular Microbiology, 96(3), 437–447. https://doi.org/10.1111/mmi.12918.
CAS
Article
PubMed
Google Scholar
Czajkowski, R., Ozymko, Z., Zwirowski, S., & Lojkowska, E. (2014). Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage ϕD5. Archives of Virology, 159(11), 3153–3155. https://doi.org/10.1007/s00705-014-2170-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dang, Q., Chen, J., Unutmaz, D., Coffin, J. M., Pathak, V. K., Powell, D., et al. (2004). Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 632–637. https://doi.org/10.1073/pnas.0307636100.
CAS
Article
PubMed
PubMed Central
Google Scholar
de la Cruz, F., & Davies, J. (2000). Horizontal gene transfer and the origin of species: Lessons from bacteria. Trends in Microbiology, 8(3), 128–133. https://doi.org/10.1016/s0966-842x(00)01703-0.
Article
PubMed
Google Scholar
De Paepe, M., Hutinet, G., Son, O., Amarir-Bouhram, J., Schbath, S., & Petit, M. A. (2014). Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: The role of Rad52-like recombinases. PLoS Genetics, 10(3), e1004181. https://doi.org/10.1371/journal.pgen.1004181.
CAS
Article
PubMed
PubMed Central
Google Scholar
Deng, Y., Xu, H., Su, Y., Liu, S., Xu, L., Guo, Z., et al. (2019). Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics, 20(1), 761. https://doi.org/10.1186/s12864-019-6137-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Díaz-Muñoz, S. L. (2017). Viral coinfection is shaped by host ecology and virus–virus interactions across diverse microbial taxa and environments. Virus Evolution, 3(1), vex011. https://doi.org/10.1093/ve/vex011.
Article
PubMed
PubMed Central
Google Scholar
Duerkop, B. A., Kleiner, M., Paez-Espino, D., Zhu, W., Bushnell, B., Hassell, B., et al. (2018). Murine colitis reveals a disease-associated bacteriophage community. Nature Microbiology, 3(9), 1023–1031. https://doi.org/10.1038/s41564-018-0210-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunne, M., & Loessner, M. J. (2019). Modified bacteriophage tail fiber proteins for labeling, immobilization, capture, and detection of bacteria. Methods in Molecular Biology, 1918, 67–86. https://doi.org/10.1007/978-1-4939-9000-9_6.
CAS
Article
PubMed
Google Scholar
Durmaz, E., & Klaenhammer, T. R. (2000). Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Applied and Environment Microbiology, 66(3), 895–903. https://doi.org/10.1128/aem.66.3.895-903.2000.
CAS
Article
Google Scholar
Endersen, L., O’Mahony, J., Hill, C., Ross, R. P., McAuliffe, O., & Coffey, A. (2014). Phage therapy in the food industry. Annual Review of Food Science and Technology, 5, 327–349. https://doi.org/10.1146/annurev-food-030713-092415.
CAS
Article
PubMed
Google Scholar
Fernández, L., Gutiérrez, D., Rodríguez, A., & García, P. (2018). Application of bacteriophages in the agro-food sector: A long way toward approval. Frontiers in Cellular and Infection Microbiology, 8, 296. https://doi.org/10.3389/fcimb.2018.00296.
Article
PubMed
PubMed Central
Google Scholar
Filée, J., Forterre, P., Sen-Lin, T., & Laurent, J. (2002). Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. Journal of Molecular Evolution, 54(6), 763–773. https://doi.org/10.1007/s00239-001-0078-x.
CAS
Article
PubMed
Google Scholar
Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S. (2011). Statistical structure of host-phage interactions. Proceedings of the National Academy of Sciences of the United States of America, 108(28), E288-297. https://doi.org/10.1073/pnas.1101595108.
Article
PubMed
PubMed Central
Google Scholar
Gaasbeek, E. J., Wagenaar, J. A., Guilhabert, M. R., Wösten, M. M., van Putten, J. P., van der Graaf-van Bloois, L., et al. (2009). A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. Journal of Bacteriology, 191(7), 2296–2306. https://doi.org/10.1128/JB.01430-08.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gabashvili, E., Osepashvili, M., Koulouris, S., Ujmajuridze, L., Tskhitishvili, Z., & Kotetishvili, M. (2020). Phage transduction is involved in the intergeneric spread of antibiotic resistance-associated bla(CTX-M), mel, and tetM loci in natural populations of some human and animal bacterial pathogens. Current Microbiology, 77(2), 185–193. https://doi.org/10.1007/s00284-019-01817-2.
CAS
Article
PubMed
Google Scholar
Gauss, P., Park, K., Spencer, T. E., & Hacker, K. J. (1994). DNA helicase requirements for DNA replication during bacteriophage T4 infection. Journal of Bacteriology, 176(6), 1667–1672. https://doi.org/10.1128/jb.176.6.1667-1672.1994.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gibbs, M. J., Armstrong, J. S., & Gibbs, A. J. (2000). Sister-scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics, 16(7), 573–582. https://doi.org/10.1093/bioinformatics/16.7.573.
CAS
Article
PubMed
Google Scholar
Gigante, A., & Atterbury, R. J. (2019). Veterinary use of bacteriophage therapy in intensively-reared livestock. Virology Journal, 16(1), 155. https://doi.org/10.1186/s12985-019-1260-3.
Article
PubMed
PubMed Central
Google Scholar
Gogokhia, L., Buhrke, K., Bell, R., Hoffman, B., Brown, D. G., Hanke-Gogokhia, C., et al. (2019). Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host & Microbe, 25(2), 285-299.e288. https://doi.org/10.1016/j.chom.2019.01.008.
CAS
Article
Google Scholar
Grose, J. H., & Casjens, S. R. (2014). Understanding the enormous diversity of bacteriophages: The tailed phages that infect the bacterial family Enterobacteriaceae. Virology, 468–470, 421–443. https://doi.org/10.1016/j.virol.2014.08.024.
CAS
Article
PubMed
Google Scholar
Haggård-Ljungquist, E., Halling, C., & Calendar, R. (1992). DNA sequences of the tail fiber genes of bacteriophage P2: Evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. Journal of Bacteriology, 174(5), 1462–1477. https://doi.org/10.1128/jb.174.5.1462-1477.1992.
Article
PubMed
PubMed Central
Google Scholar
Hambly, E., & Suttle, C. A. (2005). The viriosphere, diversity, and genetic exchange within phage communities. Current Opinion in Microbiology, 8(4), 444–450. https://doi.org/10.1016/j.mib.2005.06.005.
CAS
Article
PubMed
Google Scholar
Hendrix, R. W. (2002). Bacteriophages: Evolution of the majority. Theoretical Population Biology, 61(4), 471–480. https://doi.org/10.1006/tpbi.2002.1590.
Article
PubMed
Google Scholar
Hendrix, R. W., Hatfull, G. F., & Smith, M. C. (2003). Bacteriophages with tails: Chasing their origins and evolution. Research in Microbiology, 154(4), 253–257. https://doi.org/10.1016/s0923-2508(03)00068-8.
CAS
Article
PubMed
Google Scholar
Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E., & Hatfull, G. F. (1999). Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2192–2197. https://doi.org/10.1073/pnas.96.5.2192.
CAS
Article
PubMed
PubMed Central
Google Scholar
Henein, A. (2013). What are the limitations on the wider therapeutic use of phage? Bacteriophage, 3(2), e24872. https://doi.org/10.4161/bact.24872.
Article
PubMed
PubMed Central
Google Scholar
Hollis, T., Stattel, J. M., Walther, D. S., Richardson, C. C., & Ellenberger, T. (2001). Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9557–9562. https://doi.org/10.1073/pnas.171317698.
CAS
Article
PubMed
PubMed Central
Google Scholar
Holmfeldt, K., Middelboe, M., Nybroe, O., & Riemann, L. (2007). Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Applied and Environment Microbiology, 73(21), 6730–6739. https://doi.org/10.1128/aem.01399-07.
CAS
Article
Google Scholar
Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030.
CAS
Article
PubMed
Google Scholar
Jensen, E. C., Schrader, H. S., Rieland, B., Thompson, T. L., Lee, K. W., Nickerson, K. W., et al. (1998). Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Applied and Environment Microbiology, 64(2), 575–580. https://doi.org/10.1128/AEM.64.2.575-580.1998.
CAS
Article
Google Scholar
Jia, H., Dong, W., Yuan, L., Ma, J., Bai, Q., Pan, Z., et al. (2015). Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage JS01. Virus Genes, 50(2), 345–348. https://doi.org/10.1007/s11262-015-1168-y.
CAS
Article
PubMed
Google Scholar
Jones, C. E., Mueser, T. C., Dudas, K. C., Kreuzer, K. N., & Nossal, N. G. (2001). Bacteriophage T4 gene 41 helicase and gene 59 helicase-loading protein: A versatile couple with roles in replication and recombination. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8312–8318. https://doi.org/10.1073/pnas.121009398.
CAS
Article
PubMed
PubMed Central
Google Scholar
Joseph, S. B., Hanley, K. A., Chao, L., & Burch, C. L. (2009). Coinfection rates in Φ6 bacteriophage are enhanced by virus-induced changes in host cells. Evolutionary Applications, 2(1), 24–31. https://doi.org/10.1111/j.1752-4571.2008.00055.x.
Article
PubMed
Google Scholar
Kato, M., Ito, T., Wagner, G., & Ellenberger, T. (2004). A molecular handoff between bacteriophage T7 DNA primase and T7 DNA polymerase initiates DNA synthesis. Journal of Biological Chemistry, 279(29), 30554–30562. https://doi.org/10.1074/jbc.M403485200.
CAS
Article
Google Scholar
Kazlauskas, D., Krupovic, M., & Venclovas, Č. (2016). The logic of DNA replication in double-stranded DNA viruses: Insights from global analysis of viral genomes. Nucleic Acids Research, 44(10), 4551–4564. https://doi.org/10.1093/nar/gkw322.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kupczok, A., Neve, H., Huang, K. D., Hoeppner, M. P., Heller, K. J., Franz, C., et al. (2018). Rates of mutation and recombination in siphoviridae phage genome evolution over three decades. Molecular Biology and Evolution, 35(5), 1147–1159. https://doi.org/10.1093/molbev/msy027.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurochkina, L. P., Semenyuk, P. I., Sykilinda, N. N., & Miroshnikov, K. A. (2018). The unique two-component tail sheath of giant Pseudomonas phage PaBG. Virology, 515, 46–51. https://doi.org/10.1016/j.virol.2017.12.010.
CAS
Article
PubMed
Google Scholar
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., et al. (2010). Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11(1), 69–86. https://doi.org/10.2174/138920110790725401.
CAS
Article
PubMed
Google Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404.
CAS
Article
Google Scholar
Lee, J. B., Hite, R. K., Hamdan, S. M., Xie, X. S., Richardson, C. C., & van Oijen, A. M. (2006). DNA primase acts as a molecular brake in DNA replication. Nature, 439(7076), 621–624. https://doi.org/10.1038/nature04317.
CAS
Article
PubMed
Google Scholar
Lee, S. J., Zhu, B., Hamdan, S. M., & Richardson, C. C. (2010). Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7. Nucleic Acids Research, 38(13), 4372–4383. https://doi.org/10.1093/nar/gkq205.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lepage, P., Colombet, J., Marteau, P., Sime-Ngando, T., Doré, J., & Leclerc, M. (2008). Dysbiosis in inflammatory bowel disease: A role for bacteriophages? Gut, 57(3), 424–425. https://doi.org/10.1136/gut.2007.134668.
CAS
Article
PubMed
Google Scholar
Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111–114. https://doi.org/10.4161/bact.1.2.14590.
Article
PubMed
PubMed Central
Google Scholar
Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., et al. (1999). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of Virology, 73(1), 152–160.
CAS
Article
Google Scholar
Lopes, A., Tavares, P., Petit, M. A., Guérois, R., & Zinn-Justin, S. (2014). Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics, 15(1), 1027. https://doi.org/10.1186/1471-2164-15-1027.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahony, J., Alqarni, M., Stockdale, S., Spinelli, S., Feyereisen, M., Cambillau, C., et al. (2016). Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Scientific Reports, 6, 36667. https://doi.org/10.1038/srep36667.
CAS
Article
PubMed
PubMed Central
Google Scholar
Manaia, C. M. (2017). Assessing the risk of antibiotic resistance transmission from the environment to humans: Non-direct proportionality between abundance and risk. Trends in Microbiology, 25(3), 173–181. https://doi.org/10.1016/j.tim.2016.11.014.
CAS
Article
PubMed
Google Scholar
Manrique, P., Dills, M., & Young, M. J. (2017). The human gut phage community and its implications for health and disease. Viruses. https://doi.org/10.3390/v9060141.
Article
PubMed
PubMed Central
Google Scholar
Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003. https://doi.org/10.1093/ve/vev003.
Article
PubMed
PubMed Central
Google Scholar
Martin, D. P., Posada, D., Crandall, K. A., & Williamson, C. (2005). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research and Human Retroviruses, 21(1), 98–102. https://doi.org/10.1089/aid.2005.21.98.
CAS
Article
PubMed
Google Scholar
Martin, D., & Rybicki, E. (2000). RDP: Detection of recombination amongst aligned sequences. Bioinformatics, 16(6), 562–563. https://doi.org/10.1093/bioinformatics/16.6.562.
CAS
Article
PubMed
Google Scholar
Martinsohn, J. T., Radman, M., & Petit, M. A. (2008). The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genetics, 4(5), e1000065. https://doi.org/10.1371/journal.pgen.1000065.
CAS
Article
PubMed
PubMed Central
Google Scholar
Maurer, J. B., Oh, B., Moyer, C. L., & Duda, R. L. (2020). Capsids and portals influence each other’s conformation during assembly and maturation. Journal of Molecular Biology, 432(7), 2015–2029. https://doi.org/10.1016/j.jmb.2020.01.022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mavrich, T. N., & Hatfull, G. F. (2017). Bacteriophage evolution differs by host, lifestyle and genome. Nature Microbiology, 2, 17112. https://doi.org/10.1038/nmicrobiol.2017.112.
CAS
Article
PubMed
PubMed Central
Google Scholar
McNair, K., Bailey, B. A., & Edwards, R. A. (2012). PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics, 28(5), 614–618. https://doi.org/10.1093/bioinformatics/bts014.
CAS
Article
PubMed
PubMed Central
Google Scholar
McNair, K., Zhou, C., Dinsdale, E. A., Souza, B., & Edwards, R. A. (2019). PHANOTATE: A novel approach to gene identification in phage genomes. Bioinformatics, 35(22), 4537–4542. https://doi.org/10.1093/bioinformatics/btz265.
CAS
Article
PubMed
PubMed Central
Google Scholar
Menouni, R., Hutinet, G., Petit, M. A., & Ansaldi, M. (2015). Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiology Letters, 362(1), 1–10. https://doi.org/10.1093/femsle/fnu022.
CAS
Article
PubMed
Google Scholar
Miernikiewicz, P., Kłopot, A., Soluch, R., Szkuta, P., Kęska, W., Hodyra-Stefaniak, K., et al. (2016). T4 phage tail adhesin Gp12 counteracts LPS-induced inflammation in vivo. Frontiers Microbiology, 7, 1112. https://doi.org/10.3389/fmicb.2016.01112.
Article
Google Scholar
Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S. A., Wu, G. D., et al. (2011). The human gut virome: Inter-individual variation and dynamic response to diet. Genome Research, 21(10), 1616–1625. https://doi.org/10.1101/gr.122705.111.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moineau, S., Pandian, S., & Klaenhammer, T. R. (1994). Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Applied and Environment Microbiology, 60(6), 1832–1841.
CAS
Article
Google Scholar
Montag, D., Schwarz, H., & Henning, U. (1989). A component of the side tail fiber of Escherichia coli bacteriophage lambda can functionally replace the receptor-recognizing part of a long tail fiber protein of the unrelated bacteriophage T4. Journal of Bacteriology, 171(8), 4378–4384. https://doi.org/10.1128/jb.171.8.4378-4384.1989.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage applications for food production and processing. Viruses. https://doi.org/10.3390/v10040205.
Article
PubMed
PubMed Central
Google Scholar
Mueser, T. C., Hinerman, J. M., Devos, J. M., Boyer, R. A., & Williams, K. J. (2010). Structural analysis of bacteriophage T4 DNA replication: A review in the Virology Journal series on bacteriophage T4 and its relatives. Virology Journal, 7, 359. https://doi.org/10.1186/1743-422x-7-359.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nilsson, S. V., & Magnusson, G. (1982). Sealing of gaps in duplex DNA by T4 DNA ligase. Nucleic Acids Research, 10(5), 1425–1437. https://doi.org/10.1093/nar/10.5.1425.
CAS
Article
PubMed
PubMed Central
Google Scholar
Norman, J. M., Handley, S. A., Baldridge, M. T., Droit, L., Liu, C. Y., Keller, B. C., et al. (2015). Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell, 160(3), 447–460. https://doi.org/10.1016/j.cell.2015.01.002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265(2), 218–225. https://doi.org/10.1006/viro.1999.0056.
CAS
Article
PubMed
Google Scholar
Paraskevis, D., Kostaki, E. G., Magiorkinis, G., Panayiotakopoulos, G., Sourvinos, G., & Tsiodras, S. (2020). Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212. https://doi.org/10.1016/j.meegid.2020.104212.
CAS
Article
PubMed
PubMed Central
Google Scholar
Posada, D., & Crandall, K. A. (2001). Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13757–13762. https://doi.org/10.1073/pnas.241370698.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pride, D. T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R. A., 3rd., et al. (2012). Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME Journal, 6(5), 915–926. https://doi.org/10.1038/ismej.2011.169.
CAS
Article
Google Scholar
Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers of Pharmacology, 10, 513. https://doi.org/10.3389/fphar.2019.00513.
Article
Google Scholar
Refardt, D. (2011). Within-host competition determines reproductive success of temperate bacteriophages. ISME Journal, 5(9), 1451–1460. https://doi.org/10.1038/ismej.2011.30.
Article
Google Scholar
Reyes, A., Haynes, M., Hanson, N., Angly, F. E., Heath, A. C., Rohwer, F., et al. (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466(7304), 334–338. https://doi.org/10.1038/nature09199.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rezende, L. F., Willcox, S., Griffith, J. D., & Richardson, C. C. (2003). A single-stranded DNA-binding protein of bacteriophage T7 defective in DNA annealing. Journal of Biological Chemistry, 278(31), 29098–29105. https://doi.org/10.1074/jbc.M303374200.
CAS
Article
Google Scholar
Rohwer, F., & Barott, K. (2013). Viral information. Biology and Philosophy, 28(2), 283–297. https://doi.org/10.1007/s10539-012-9344-0.
Article
PubMed
Google Scholar
Rossi, R., Montecucco, A., Ciarrocchi, G., & Biamonti, G. (1997). Functional characterization of the T4 DNA ligase: A new insight into the mechanism of action. Nucleic Acids Research, 25(11), 2106–2113. https://doi.org/10.1093/nar/25.11.2106.
CAS
Article
PubMed
PubMed Central
Google Scholar
Roux, S., Hallam, S. J., Woyke, T., & Sullivan, M. B. (2015). Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife. https://doi.org/10.7554/eLife.08490.
Article
PubMed
PubMed Central
Google Scholar
Roux, S., Hawley, A. K., Torres Beltran, M., Scofield, M., Schwientek, P., Stepanauskas, R., et al. (2014). Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife, 3, e03125. https://doi.org/10.7554/eLife.03125.
Article
PubMed
PubMed Central
Google Scholar
Roux, S., Krupovic, M., Poulet, A., Debroas, D., & Enault, F. (2012). Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE, 7(7), e40418. https://doi.org/10.1371/journal.pone.0040418.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sandmeier, H., Iida, S., & Arber, W. (1992). DNA inversion regions Min of plasmid p15B and Cin of bacteriophage P1: Evolution of bacteriophage tail fiber genes. Journal of Bacteriology, 174(12), 3936–3944. https://doi.org/10.1128/jb.174.12.3936-3944.1992.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sarker, S. A., McCallin, S., Barretto, C., Berger, B., Pittet, A. C., Sultana, S., et al. (2012). Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, 434(2), 222–232. https://doi.org/10.1016/j.virol.2012.09.002.
CAS
Article
PubMed
Google Scholar
Seper, A., Fengler, V. H., Roier, S., Wolinski, H., Kohlwein, S. D., Bishop, A. L., et al. (2011). Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Molecular Microbiology, 82(4), 1015–1037. https://doi.org/10.1111/j.1365-2958.2011.07867.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen, X., Li, M., Zeng, Y., Hu, X., Tan, Y., Rao, X., et al. (2012). Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Archives of Virology, 157(11), 2133–2141. https://doi.org/10.1007/s00705-012-1409-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M., & Keck, J. L. (2008). SSB as an organizer/mobilizer of genome maintenance complexes. Critical Reviews in Biochemistry and Molecular Biology, 43(5), 289–318. https://doi.org/10.1080/10409230802341296.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith, J. M. (1992). Analyzing the mosaic structure of genes. Journal of Molecular Evolution, 34(2), 126–129. https://doi.org/10.1007/bf00182389.
CAS
Article
PubMed
Google Scholar
Smith, K. C., Castro-Nallar, E., Fisher, J. N., Breakwell, D. P., Grose, J. H., & Burnett, S. H. (2013). Phage cluster relationships identified through single gene analysis. BMC Genomics, 14, 410. https://doi.org/10.1186/1471-2164-14-410.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sousa, J. A. M. D., Pfeifer, E., Touchon, M., & Rocha, E. P. C. (2020). Genome diversification via genetic exchanges between temperate and virulent bacteriophages. bioRxiv. https://doi.org/10.1101/2020.04.14.041137.
Article
Google Scholar
Sullivan, M. B., Waterbury, J. B., & Chisholm, S. W. (2003). Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 424(6952), 1047–1051. https://doi.org/10.1038/nature01929.
CAS
Article
PubMed
Google Scholar
Suttle, C. A. (2005). Viruses in the sea. Nature, 437(7057), 356–361. https://doi.org/10.1038/nature04160.
CAS
Article
PubMed
Google Scholar
Suttle, C. A. (2007). Marine viruses–major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801–812. https://doi.org/10.1038/nrmicro1750.
CAS
Article
PubMed
Google Scholar
Tetz, G. V., Ruggles, K. V., Zhou, H., Heguy, A., Tsirigos, A., & Tetz, V. (2017). Bacteriophages as potential new mammalian pathogens. Scientific Reports, 7(1), 7043. https://doi.org/10.1038/s41598-017-07278-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tetz, G., & Tetz, V. (2016). Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathogen, 8, 33. https://doi.org/10.1186/s13099-016-0109-1.
CAS
Article
Google Scholar
Tetz, G., & Tetz, V. (2018). Bacteriophages as new human viral pathogens. Microorganisms. https://doi.org/10.3390/microorganisms6020054.
Article
PubMed
PubMed Central
Google Scholar
Turner, P. E., & Chao, L. (1998). Sex and the evolution of intrahost competition in RNA virus phi6. Genetics, 150(2), 523–532.
CAS
Article
Google Scholar
Villarroel, J., Kleinheinz, K. A., Jurtz, V. I., Zschach, H., Lund, O., Nielsen, M., et al. (2016). HostPhinder: A phage host prediction tool. Viruses. https://doi.org/10.3390/v8050116.
Article
PubMed
PubMed Central
Google Scholar
Wang, J., Liu, F., Su, T., Chang, Y., Guo, Q., Wang, Q., et al. (2019a). The phage T4 DNA ligase in vivo improves the survival-coupled bacterial mutagenesis. Microbial Cell Factories, 18(1), 107. https://doi.org/10.1186/s12934-019-1160-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, J., Yang, X., Liu, H., Wang, L., Zhou, J., Han, X., et al. (2019b). Prevalence of Wēnzhōu virus in small mammals in Yunnan Province, China. PLoS Neglected Tropical Diseases, 13(2), e0007049. https://doi.org/10.1371/journal.pntd.0007049.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, W. L., Xu, S. Y., Ren, Z. G., Tao, L., Jiang, J. W., & Zheng, S. S. (2015). Application of metagenomics in the human gut microbiome. World Journal of Gastroenterology, 21(3), 803–814. https://doi.org/10.3748/wjg.v21.i3.803.
Article
PubMed
PubMed Central
Google Scholar
Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181. https://doi.org/10.1016/j.femsre.2003.08.001.
CAS
Article
PubMed
Google Scholar
White, D. J., Bryant, D., & Gemmell, N. J. (2013). How good are indirect tests at detecting recombination in human mtDNA? G3 (Bethesda), 3(7), 1095–1104. https://doi.org/10.1534/g3.113.006510.
CAS
Article
Google Scholar
Wichels, A., Biel, S. S., Gelderblom, H. R., Brinkhoff, T., Muyzer, G., & Schütt, C. (1998). Bacteriophage diversity in the North Sea. Applied and Environment Microbiology, 64(11), 4128–4133.
CAS
Article
Google Scholar
Wilhelm, S. W., Jeffrey, W. H., Suttle, C. A., & Mitchell, D. L. (2002). Estimation of biologically damaging UV levels in marine surface waters with DNA and viral dosimeters. Photochemistry and Photobiology, 76(3), 268–273. https://doi.org/10.1562/0031-8655(2002)076%3c0268:eobdul%3e2.0.co;2.
CAS
Article
PubMed
Google Scholar
Wommack, K. E., & Colwell, R. R. (2000). Virioplankton: Viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64(1), 69–114. https://doi.org/10.1128/mmbr.64.1.69-114.2000.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong, H. C., Wang, T. Y., Yang, C. W., Tang, C. T., Ying, C., Wang, C. H., et al. (2019). Characterization of a lytic vibriophage VP06 of Vibrio parahaemolyticus. Research in Microbiology, 170(1), 13–23. https://doi.org/10.1016/j.resmic.2018.07.003.
CAS
Article
PubMed
Google Scholar
Woolston, J., Parks, A. R., Abuladze, T., Anderson, B., Li, M., Carter, C., et al. (2013). Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage, 3(3), e25697. https://doi.org/10.4161/bact.25697.
Article
PubMed
PubMed Central
Google Scholar
Worobey, M., & Holmes, E. C. (1999). Evolutionary aspects of recombination in RNA viruses. Journal of General Virology, 80(Pt 10), 2535–2543. https://doi.org/10.1099/0022-1317-80-10-2535.
CAS
Article
Google Scholar
Wright, A., Hawkins, C. H., Anggård, E. E., & Harper, D. R. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; A preliminary report of efficacy. Clinical Otolaryngology, 34(4), 349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x.
CAS
Article
PubMed
Google Scholar
Yonesaki, T. (1994). Involvement of a replicative DNA helicase of bacteriophage T4 in DNA recombination. Genetics, 138(2), 247–252.
CAS
Article
Google Scholar
Yu, F., & Mizushima, S. (1982). Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. Journal of Bacteriology, 151(2), 718–722.
CAS
Article
Google Scholar
Yuan, C., Liu, W., Wang, Y., Hou, J., Zhang, L., & Wang, G. (2017). Homologous recombination is a force in the evolution of canine distemper virus. PLoS ONE, 12(4), e0175416. https://doi.org/10.1371/journal.pone.0175416.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yuan, C., Lou, X. W., Rhoades, E., Chen, H., & Archer, L. A. (2007). T4 DNA ligase is more than an effective trap of cyclized dsDNA. Nucleic Acids Research, 35(16), 5294–5302. https://doi.org/10.1093/nar/gkm582.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yuan, L., Cui, Z., Wang, Y., Guo, X., & Zhao, Y. (2014). Complete genome sequence of virulent bacteriophage SHOU24, which infects foodborne pathogenic Vibrio parahaemolyticus. Archives of Virology, 159(11), 3089–3093. https://doi.org/10.1007/s00705-014-2160-x.
CAS
Article
PubMed
Google Scholar
Zhang, Y., Tan, X., Cui, A., Mao, N., Xu, S., Zhu, Z., et al. (2013). Complete genome analysis of the C4 subgenotype strains of enterovirus 71: Predominant recombination C4 viruses persistently circulating in China for 14 years. PLoS ONE, 8(2), e56341. https://doi.org/10.1371/journal.pone.0056341.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, Z., Tian, C., Zhao, J., Chen, X., Wei, X., Li, H., et al. (2018). Characterization of tail sheath protein of N4-like phage phiAxp-3. Frontiers of Microbiology, 9, 450. https://doi.org/10.3389/fmicb.2018.00450.
CAS
Article
Google Scholar
Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., & Wishart, D. S. (2011). PHAST: A fast phage search tool. Nucleic Acids Research, 39, W347-352. https://doi.org/10.1093/nar/gkr485.
CAS
Article
PubMed
PubMed Central
Google Scholar