The Optimization of Methods for the Collection of Aerosolized Murine Norovirus

Abstract

Globally, norovirus is the most common gastroenteritis causing pathogen. Annually, norovirus causes 685 million cases of acute gastroenteritis and 200,000 deaths, worldwide. Recent evidence has suggested that norovirus can also be spread via aerosolization; however, an indoor generation source has yet to be determined. We optimized a sampling method for the collection of aerosolized norovirus using murine norovirus (MNV) as a surrogate. Optimization of the sampling method was performed using two bioaerosol samplers (SKC BioSampler and the NIOSH Bioaerosol Cyclone Sampler 251) and two sampling media (Hanks Balanced Salt Solution [HBSS] and Phosphate Buffered Saline [PBS]). Murine norovirus was aerosolized in a bioaerosol chamber and later collected using each sampler/media combination. Collected MNV was quantified using quantitative polymerase chain reaction (qPCR). Intact capsids of MNV were assessed using propidium monoazide dye in combination with qPCR and confirmed with transmission electron microscopy. Ten trials were conducted, with each trial lasting for 30 min. The SKC BioSampler collected a significantly higher concentration of MNV than the NIOSH-251 sampler did (p-value < 0.0001). However, there were no significant differences in the relative percent of MNV that remained viable between both samplers (p-value = 0.2215). The use of HBSS sampling media yielded a higher concentration of MNV than PBS media (p-value = 0.0125). However, PBS media maintained viability at a significantly higher percentage than HBSS media (p-value < 0.0001). The results support the optimization of a sampling method for the collection of aerosolized MNV and possibly norovirus in different sampling environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bailey, E. S., Choi, J. Y., Zemke, J., Yondon, M., & Gray, G. C. (2018). Molecular surveillance of respiratory viruses with bioaerosol sampling in an airport. Tropical Diseases, Travel Medicine and Vaccines, 4(1), 11.

    PubMed  PubMed Central  Google Scholar 

  2. Blachere, F. M., Lindsley, W. G., Pearce, T. A., Anderson, S. E., Fisher, M., Khakoo, R., et al. (2009). Measurement of airborne influenza virus in a hospital emergency department. Clinical Infectious Diseases, 48(4), 438–440.

    PubMed  Google Scholar 

  3. Bonifait, L., Charlebois, R., Vimont, A., Turgeon, N., Veillette, M., Longtin, Y., et al. (2015). Detection and quantification of airborne norovirus during outbreaks in healthcare facilities. Clinical Infectious Diseases, 61(3), 299–304.

    PubMed  Google Scholar 

  4. Brooks, J., Tanner, B., Josephson, K., Gerba, C., Haas, C., & Pepper, I. (2005). A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 99(2), 310–322.

    CAS  PubMed  Google Scholar 

  5. Cao, G., Noti, J., Blachere, F., Lindsley, W., & Beezhold, D. (2011). Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler. Journal of Environmental Monitoring, 13(12), 3321–3328.

    CAS  PubMed  Google Scholar 

  6. Chang, C.-W., Chou, F.-C., & Hung, P.-Y. (2010). Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative PCR. Journal of Aerosol Science, 41(12), 1055–1065.

    CAS  Google Scholar 

  7. Chow, C. M., Leung, A., & Hon, K. L. (2010). Acute gastroenteritis: From guidelines to real life. Clinical and Experimental Gastroenterology, 3, 97–112.

    PubMed  PubMed Central  Google Scholar 

  8. Fabian, M., Miller, S., Reponen, T., & Hernandez, M. (2005). Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. Journal of Aerosol Science, 36(5–6), 763–783.

    CAS  Google Scholar 

  9. Fabian, P., McDevitt, J., & Houseman, E. (2009a). Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: Considerations for a new infectious virus aerosol sampler. Indoor Air, 19, 433–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fabian, P., McDevitt, J. J., Lee, W.-M., Houseman, E. A., & Milton, D. K. (2009b). An optimized method to detect influenza virus and human rhinovirus from exhaled breath and the airborne environment. Journal of Environmental Monitoring, 11(2), 314–317.

    CAS  PubMed  Google Scholar 

  11. Farnsworth, J. E., Goyal, S. M., Kim, S. W., Kuehn, T. H., Raynor, P. C., Ramakrishnan, M., et al. (2006). Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters. Journal of Environmental Monitoring, 8(10), 1006–1013.

    CAS  PubMed  Google Scholar 

  12. Girlando, E. M. (2014). Sampling for airborne influenza virus using RNA preservation buffer: a new approach. Iowa: University of Iowa.

    Google Scholar 

  13. Gregoricus, N., Hall, A. J., Lopman, B., Parashar, U. D., Park, G. W., Vinjé, J., et al. (2011). Updated norovirus outbreak management and disease prevention guidelines. Morbidity and Mortality Weekly Report: Recommendations and Reports, 60(3), 1–15.

    Google Scholar 

  14. Hall, A. J., Wikswo, M. E., Manikonda, K., Roberts, V. A., Yoder, J. S., & Gould, L. H. (2013). Acute gastroenteritis surveillance through the national outbreak reporting system, United States. Emerging Infectious Diseases, 19(8), 1305.

    PubMed  PubMed Central  Google Scholar 

  15. Hermann, J. R., Hoff, S. J., Yoon, K.-J., Burkhardt, A. C., Evans, R. B., & Zimmerman, J. J. (2006). Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. Applied and Environmental Microbiology, 72(7), 4811–4818.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogan, C., Jr., Kettleson, E., Lee, M. H., Ramaswami, B., Angenent, L., & Biswas, P. (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology, 99(6), 1422–1434.

    PubMed  Google Scholar 

  17. Kienlen, L. L. (2015). Comparison of bioaerosol collection methods in the detection of airborne influenza virus. Iowa: University of Iowa.

    Google Scholar 

  18. Kim, S., & Ko, G. (2012). Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Letters in Applied Microbiology, 55(3), 182–188.

    CAS  PubMed  Google Scholar 

  19. Knowlton, S. D., Boles, C. L., Perencevish, E. N., Diekema, D. J., & Nonnenmann, M. W. (2018). Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrobial Resistance & Infection Control, 7(1), 16.

    Google Scholar 

  20. Lee, M., Seo, D. J., Seo, J., Oh, H., Jeon, S. B., Ha, S.-D., et al. (2015). Detection of viable murine norovirus using the plaque assay and propidium-monoazide-combined real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 221, 57–61.

    CAS  PubMed  Google Scholar 

  21. Lin, W.-H., & Li, C.-S. (1998). The effect of sampling time and flow rates on the bioefficiency of three fungal spore sampling methods. Aerosol Science and Technology, 28(6), 511–522.

    CAS  Google Scholar 

  22. Lindsley, W. G., Blachere, F. M., Thewlis, R. E., Vishnu, A., Davis, K. A., Cao, G., et al. (2010). Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS ONE, 5(11), e15100.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindsley, W. G., Schmechel, D., & Chen, B. T. (2006). A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. Journal of Environmental Monitoring, 8(11), 1136–1142.

    CAS  PubMed  Google Scholar 

  24. Lopman, B. A., Steele, D., Kirkwood, C. D., & Parashar, U. D. (2016). The vast and varied global burden of norovirus: Prospects for prevention and control. PLoS Medicine, 13(4), e1001999.

    PubMed  PubMed Central  Google Scholar 

  25. Macher, J., & Willeke, K. (1992). Performance criteria for bioaerosol samplers. Journal of Aerosol Science, 23, 647–650.

    Google Scholar 

  26. Marks, P., Vipond, I., Carlisle, D., Deakin, D., Fey, R., & Caul, E. (2000). Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiology & Infection, 124(3), 481–487.

    CAS  Google Scholar 

  27. Nelson, C. A., Wilen, C. B., Dai, Y.-N., Orchard, R. C., Kim, A. S., Stegeman, R. A., et al. (2018). Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proceedings of the National Academy of Sciences, 115(39), E9201–E9210.

    CAS  Google Scholar 

  28. Nevalainen, A., Pastuszka, J., Liebhaber, F., & Willeke, K. (1992). Performance of bioaerosol samplers: Collection characteristics and sampler design considerations. Atmospheric Environment: Part A: General Topics, 26(4), 531–540.

    Google Scholar 

  29. Patel, M. M., Widdowson, M.-A., Glass, R. I., Akazawa, K., Vinjé, J., & Parashar, U. D. (2008). Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infectious Diseases, 14(8), 1224.

    PubMed  PubMed Central  Google Scholar 

  30. R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Core Team.

    Google Scholar 

  31. Randazzo, W., Khezri, M., Ollivier, J., Le Guyader, F. S., Rodríguez-Díaz, J., Aznar, R., et al. (2018). Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 266, 1–7.

    PubMed  Google Scholar 

  32. Randazzo, W., López-Gálvez, F., Allende, A., Aznar, R., & Sánchez, G. (2016). Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water. International Journal of Food Microbiology, 229, 1–6.

    CAS  PubMed  Google Scholar 

  33. Stewart, S. L., Grinshpun, S. A., Willeke, K., Terzieva, S., Ulevicius, V., & Donnelly, J. (1995). Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology, 61(4), 1232–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thedell, T., Boles, C. L., Cwiertny, D. W., Brown, G. D., Qian, J., & Nonnenmann, M. W. (2018). Comparisons of a novel air sampling filter material wash buffers and extraction methods in the detection and quantification of influenza virus. bioRxiv. https://doi.org/10.1101/441154.

    Article  Google Scholar 

  35. Tseng, C.-C., & Li, C.-S. (2005). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science, 36(5–6), 593–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Uhrbrand, K., Koponen, I. K., Schultz, A. C., & Madsen, A. M. (2018). Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus. Journal of Applied Microbiology, 124(4), 990–1000.

    CAS  PubMed  Google Scholar 

  37. Uhrbrand, K., Schultz, A. C., Koivisto, A., Nielsen, U., & Madsen, A. (2017). Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. Water Research, 112, 110–119.

    CAS  PubMed  Google Scholar 

  38. Uhrbrand, K., Schultz, A. C., & Madsen, A. M. (2011). Exposure to airborne noroviruses and other bioaerosol components at a wastewater treatment plant in Denmark. Food and Environmental Virology, 3(3–4), 130–137.

    CAS  Google Scholar 

  39. Verreault, D., Moineau, S., & Duchaine, C. (2008). Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews, 72(3), 413–444.

    CAS  PubMed  Google Scholar 

  40. Wang, Z., Reponen, T., Grinshpun, S. A., Górny, R. L., & Willeke, K. (2001). Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 32(5), 661–674.

    CAS  Google Scholar 

  41. Willeke, K., Lin, X., & Grinshpun, S. A. (1998). Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology, 28(5), 439–456.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Skip Virgin’s Laboratory at Washington University School of Medicine for graciously donating the required amount of MNV. We acknowledge the National Institute for Occupational Safety and Health for allowing us to use their NIOSH Bioaerosol Cyclone samplers. We would also like the thank Dr. Tom Peters laboratory at the University of Iowa for technical support involving the creation and testing of the bioaerosol chamber. Lastly, we acknowledge Dr. Matthew Nonnenmann’s Lav Lab, including support staff, for laboratory assistance during this project.

Funding

This research was supported by a pilot project research training grant from the Heartland Center for Occupational Health and Safety at the University of Iowa. The Heartland Center is supported by Training Grant No. T42OH008491 from the Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Corey Boles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boles, C., Brown, G., Park, J.H. et al. The Optimization of Methods for the Collection of Aerosolized Murine Norovirus. Food Environ Virol 12, 199–208 (2020). https://doi.org/10.1007/s12560-020-09430-4

Download citation

Keywords

  • Bioaerosol
  • Norovirus
  • Aerosol
  • Environmental health
  • Exposure science
  • Industrial hygiene