Skip to main content

Advertisement

Log in

Development and Evaluation of a Novel Armored RNA Technology Using Bacteriophage Qβ

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Foodborne viruses are a global threat to food safety. Real-time reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to detect viral RNA in food. Armored RNA (AR) prepared using the MS2 phage system is a successful positive control for detecting foodborne viruses and is an important quality control process when using real-time RT-PCR. In this study, we report a novel technology for preparing AR using bacteriophage Qβ and compare its stability with AR prepared using the MS2 phage system for packaging norovirus detection target RNA. AR could be successfully and efficiently produced using the developed bacteriophage Qβ system. Two types of AR–AR-QNoV prepared using the Qβ system and AR-MNoV prepared using the MS2 system—were stored at different temperatures for different durations. After incubating at − 20 °C for 360 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 8.9% and 35.9%, respectively. After incubating at 4 °C for 60 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 12.0% and 38.9%, respectively. After incubating at 45 °C, the copy numbers of AR-QNoV decreased by 71.8% after 5 days, whereas those of AR-MNoV decreased by 92.9% after only 4 days. After 5 days, AR-MNoV could not be detected using real-time RT-PCR. There was a significant difference in copy numbers decrease rate between AR-QNoV and AR-MNoV at three different temperatures (P < 0.05 ). Therefore, AR prepared using the new bacteriophage Qβ system is more stable than the traditional AR, making the developed strategy a good candidate for AR preparation and quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aarthi, D., Ananda Rao, K., Robinson, R., & Srinivasan, V. A. (2004). Validation of binary ethyleneimine (BEI) used as an inactivant for foot and mouth disease tissue culture vaccine. Biologicals,32(3), 153–156. https://doi.org/10.1016/j.biologicals.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Akane, A., Matsubara, K., Nakamura, H., Takahashi, S., & Kimura, K. (1994). Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. Journal of Forensic Sciences,39(2), 362–372.

    Article  CAS  Google Scholar 

  • Ashcroft, A. E., Lago, H., Macedo, J. M., Horn, W. T., Stonehouse, N. J., & Stockley, P. G. (2005). Engineering thermal stability in RNA phage capsids via disulphide bonds. Journal of Nanoscience and Nanotechnology,5(12), 2034–2041.

    Article  CAS  Google Scholar 

  • Beld, M., Minnaar, R., Weel, J., Sol, C., Damen, M., van der Avoort, H., et al. (2004). Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control. Journal of Clinical Microbiology,42(7), 3059–3064. https://doi.org/10.1128/jcm.42.7.3059-3064.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch, A., Pintó, R. M., & Guix, S. (2016). Foodborne viruses. Current Opinion in Food Science,8, 110–119.

    Article  Google Scholar 

  • Bressler, A. M., & Nolte, F. S. (2004). Preclinical evaluation of two real-time, reverse transcription-PCR assays for detection of the severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology,42(3), 987–991.

    Article  CAS  Google Scholar 

  • Bundy, B. C., & Swartz, J. R. (2011). Efficient disulfide bond formation in virus-like particles. Journal of Biotechnology,154(4), 230–239. https://doi.org/10.1016/j.jbiotec.2011.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Li, N., Chen, L., Lee, J., & Gassensmith, J. J. (2016). Dual functionalized bacteriophage Qbeta as a photocaged drug carrier. Small (Weinheim an der Bergstrasse, Germany),12(33), 4563–4571. https://doi.org/10.1002/smll.201601053.

    Article  CAS  Google Scholar 

  • Das, A., Spackman, E., Senne, D., Pedersen, J., & Suarez, D. L. (2006). Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. Journal of Clinical Microbiology,44(9), 3065–3073. https://doi.org/10.1128/jcm.00639-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisler, D. L., McNabb, A., Jorgensen, D. R., & Isaac-Renton, J. L. (2004). Use of an internal positive control in a multiplex reverse transcription-PCR to detect West Nile virus RNA in mosquito pools. Journal of Clinical Microbiology,42(2), 841–843.

    Article  CAS  Google Scholar 

  • Fiedler, J. D., Higginson, C., Hovlid, M. L., Kislukhin, A. A., Castillejos, A., Manzenrieder, F., et al. (2012). Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules,13(8), 2339–2348. https://doi.org/10.1021/bm300590x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology,41(4), 1548–1557.

    Article  CAS  Google Scholar 

  • Karatayli, E., Altunoglu, Y. C., Karatayli, S. C., Alagoz, S. G., Cinar, K., Yalcin, K., et al. (2014). A one step real time PCR method for the quantification of hepatitis delta virus RNA using an external armored RNA standard and intrinsic internal control. Journal of Clinical Virology,60(1), 11–15. https://doi.org/10.1016/j.jcv.2014.01.021.

    Article  CAS  PubMed  Google Scholar 

  • Khan, G., Kangro, H. O., Coates, P. J., & Heath, R. B. (1991). Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. Journal of Clinical Pathology,44(5), 360–365.

    Article  CAS  Google Scholar 

  • Koopmans, M., von Bonsdorff, C. H., Vinjé, J., de Medici, D., & Monroe, S. (2002). Foodborne viruses. FEMS Microbiology Review,26(2), 187–205.

    Article  CAS  Google Scholar 

  • Lantz, P. G., Matsson, M., Wadström, T., & Rådström, P. (1997). Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. Journal of Microbiological Methods,28(3), 159–167.

    Article  CAS  Google Scholar 

  • Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods,123(1), 1–7. https://doi.org/10.1016/j.jviromet.2004.08.023.

    Article  CAS  PubMed  Google Scholar 

  • Malorny, B., Tassios, P. T., Radstrom, P., Cook, N., Wagner, M., & Hoorfar, J. (2003). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology,83(1), 39–48.

    Article  CAS  Google Scholar 

  • Mikel, P., Vasickova, P., Tesarik, R., Malenovska, H., Kulich, P., Vesely, T., et al. (2016). Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Frontiers in Microbiology,7, 1911. https://doi.org/10.3389/fmicb.2016.01911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monjure, C. J., Tatum, C. D., Panganiban, A. T., Arainga, M., Traina-Dorge, V., Marx, P. A., Jr., et al. (2014). Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA. Journal of Medical Primatology,43(1), 31–43. https://doi.org/10.1111/jmp.12088.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., et al. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology,35(4), 995–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niesters, H. G. M. (2002). Clinical virology in real time. Journal of Clinical Virology,25(3), 3–12.

    Article  Google Scholar 

  • Pasloske, B. L., Walkerpeach, C. R., Obermoeller, R. D., Winkler, M., & DuBois, D. B. (1998). Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. Journal of Clinical Microbiology,36(12), 3590–3594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani, G., Marino, F., Cristiano, K., Bisso, G. M., Mele, C., Luciani, F., et al. (2008). External quality assessment for the detection of HCV RNA, HIV RNA and HBV DNA in plasma by nucleic acid amplification technology: a novel approach. Vox Sanguinis,95(1), 8–12. https://doi.org/10.1111/j.1423-0410.2008.01047.x.

    Article  CAS  PubMed  Google Scholar 

  • Polo, D., Varela, M. F., & Romalde, J. L. (2015). Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology,193, 43–50. https://doi.org/10.1016/j.ijfoodmicro.2014.10.007.

    Article  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Song, L., Sun, S., Li, B., Pan, Y., Li, W., Zhang, K., et al. (2011). External quality assessment for enterovirus 71 and coxsackievirus A16 detection by reverse transcription-PCR using armored RNA as a virus surrogate. Journal of Clinical Microbiology,49(10), 3591–3595. https://doi.org/10.1128/jcm.00686-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stals, A., Baert, L., Botteldoorn, N., Denayer, S., Mauroy, A., Scipioni, A., et al. (2012). Molecular detection and genotyping of noroviruses. Food and Environmental Virology,4(4), 153–167.

    Article  CAS  Google Scholar 

  • Stonehouse, N. J., Valegard, K., Golmohammadi, R., van den Worm, S., Walton, C., Stockley, P. G., et al. (1996). Crystal structures of MS2 capsids with mutations in the subunit FG loop. Journal of Molecular Biology,256(2), 330–339. https://doi.org/10.1006/jmbi.1996.0089.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Jia, T., Sun, Y., Han, Y., Wang, L., Zhang, R., et al. (2013). External quality assessment for Avian Influenza A (H7N9) Virus detection using armored RNA. Journal of Clinical Microbiology,51(12), 4055–4059. https://doi.org/10.1128/jcm.02018-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasiljeva, I., Kozlovska, T., Cielens, I., Strelnikova, A., Kazaks, A., Ose, V., et al. (1998). Mosaic Qbeta coats as a new presentation model. FEBS Letters,431(1), 7–11.

    Article  CAS  Google Scholar 

  • Wei, B., Wei, Y., Zhang, K., Yang, C., Wang, J., Xu, R., et al. (2008a). Construction of armored RNA containing long-size chimeric RNA by increasing the number and affinity of the pac site in exogenous RNA and sequence coding coat protein of the MS2 bacteriophage. Intervirology,51(2), 144–150. https://doi.org/10.1159/000141707.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y., Yang, C., Wei, B., Huang, J., Wang, L., Meng, S., et al. (2008b). RNase-resistant virus-like particles containing long chimeric RNA sequences produced by two-plasmid coexpression system. Journal of Clinical Microbiology,46(5), 1734–1740. https://doi.org/10.1128/jcm.02248-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environment Microbiology,63(10), 3741–3751.

    CAS  Google Scholar 

  • Yu, X. F., Pan, J. C., Ye, R., Xiang, H. Q., Kou, Y., & Huang, Z. C. (2008). Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology,46(3), 837–841. https://doi.org/10.1128/jcm.01904-07.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, S., Li, J., Xu, R., Wang, L., Zhang, K., & Zhang, R. (2009). Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1. Journal of Clinical Microbiology,47(8), 2571–2576. https://doi.org/10.1128/jcm.00232-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Sun, Y., Jia, T., Zhang, L., Wang, G., Zhang, R., et al. (2015). External quality assessment for the detection of measles virus by reverse transcription-PCR using armored RNA. PLoS ONE,10(8), e0134681. https://doi.org/10.1371/journal.pone.0134681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Ma, Y., Zhao, S., & Yang, N. (2007). Armored RNA as positive control and standard for quantitative reverse transcription-polymerase chain reaction assay for rubella virus. Archives of Virology,152(1), 219–224. https://doi.org/10.1007/s00705-006-0839-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (2017YFC1600703), Special Program for Science and Technology Basic Research of the Ministry of Science and Technology China (2013FY113300), National Shellfish Industry Technology System (CARS-47), and the National Key Project for Agro-product Quality and Safety Risk Assessment, PRC (No. GJFP 2019029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Li, F., Qu, M. et al. Development and Evaluation of a Novel Armored RNA Technology Using Bacteriophage Qβ. Food Environ Virol 11, 383–392 (2019). https://doi.org/10.1007/s12560-019-09400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-019-09400-5

Keywords