Abstract
Foodborne viruses are a global threat to food safety. Real-time reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to detect viral RNA in food. Armored RNA (AR) prepared using the MS2 phage system is a successful positive control for detecting foodborne viruses and is an important quality control process when using real-time RT-PCR. In this study, we report a novel technology for preparing AR using bacteriophage Qβ and compare its stability with AR prepared using the MS2 phage system for packaging norovirus detection target RNA. AR could be successfully and efficiently produced using the developed bacteriophage Qβ system. Two types of AR–AR-QNoV prepared using the Qβ system and AR-MNoV prepared using the MS2 system—were stored at different temperatures for different durations. After incubating at − 20 °C for 360 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 8.9% and 35.9%, respectively. After incubating at 4 °C for 60 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 12.0% and 38.9%, respectively. After incubating at 45 °C, the copy numbers of AR-QNoV decreased by 71.8% after 5 days, whereas those of AR-MNoV decreased by 92.9% after only 4 days. After 5 days, AR-MNoV could not be detected using real-time RT-PCR. There was a significant difference in copy numbers decrease rate between AR-QNoV and AR-MNoV at three different temperatures (P < 0.05 ). Therefore, AR prepared using the new bacteriophage Qβ system is more stable than the traditional AR, making the developed strategy a good candidate for AR preparation and quality control.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aarthi, D., Ananda Rao, K., Robinson, R., & Srinivasan, V. A. (2004). Validation of binary ethyleneimine (BEI) used as an inactivant for foot and mouth disease tissue culture vaccine. Biologicals,32(3), 153–156. https://doi.org/10.1016/j.biologicals.2004.09.001.
Akane, A., Matsubara, K., Nakamura, H., Takahashi, S., & Kimura, K. (1994). Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. Journal of Forensic Sciences,39(2), 362–372.
Ashcroft, A. E., Lago, H., Macedo, J. M., Horn, W. T., Stonehouse, N. J., & Stockley, P. G. (2005). Engineering thermal stability in RNA phage capsids via disulphide bonds. Journal of Nanoscience and Nanotechnology,5(12), 2034–2041.
Beld, M., Minnaar, R., Weel, J., Sol, C., Damen, M., van der Avoort, H., et al. (2004). Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control. Journal of Clinical Microbiology,42(7), 3059–3064. https://doi.org/10.1128/jcm.42.7.3059-3064.2004.
Bosch, A., Pintó, R. M., & Guix, S. (2016). Foodborne viruses. Current Opinion in Food Science,8, 110–119.
Bressler, A. M., & Nolte, F. S. (2004). Preclinical evaluation of two real-time, reverse transcription-PCR assays for detection of the severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology,42(3), 987–991.
Bundy, B. C., & Swartz, J. R. (2011). Efficient disulfide bond formation in virus-like particles. Journal of Biotechnology,154(4), 230–239. https://doi.org/10.1016/j.jbiotec.2011.04.011.
Chen, Z., Li, N., Chen, L., Lee, J., & Gassensmith, J. J. (2016). Dual functionalized bacteriophage Qbeta as a photocaged drug carrier. Small (Weinheim an der Bergstrasse, Germany),12(33), 4563–4571. https://doi.org/10.1002/smll.201601053.
Das, A., Spackman, E., Senne, D., Pedersen, J., & Suarez, D. L. (2006). Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. Journal of Clinical Microbiology,44(9), 3065–3073. https://doi.org/10.1128/jcm.00639-06.
Eisler, D. L., McNabb, A., Jorgensen, D. R., & Isaac-Renton, J. L. (2004). Use of an internal positive control in a multiplex reverse transcription-PCR to detect West Nile virus RNA in mosquito pools. Journal of Clinical Microbiology,42(2), 841–843.
Fiedler, J. D., Higginson, C., Hovlid, M. L., Kislukhin, A. A., Castillejos, A., Manzenrieder, F., et al. (2012). Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules,13(8), 2339–2348. https://doi.org/10.1021/bm300590x.
Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology,41(4), 1548–1557.
Karatayli, E., Altunoglu, Y. C., Karatayli, S. C., Alagoz, S. G., Cinar, K., Yalcin, K., et al. (2014). A one step real time PCR method for the quantification of hepatitis delta virus RNA using an external armored RNA standard and intrinsic internal control. Journal of Clinical Virology,60(1), 11–15. https://doi.org/10.1016/j.jcv.2014.01.021.
Khan, G., Kangro, H. O., Coates, P. J., & Heath, R. B. (1991). Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. Journal of Clinical Pathology,44(5), 360–365.
Koopmans, M., von Bonsdorff, C. H., Vinjé, J., de Medici, D., & Monroe, S. (2002). Foodborne viruses. FEMS Microbiology Review,26(2), 187–205.
Lantz, P. G., Matsson, M., Wadström, T., & Rådström, P. (1997). Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. Journal of Microbiological Methods,28(3), 159–167.
Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods,123(1), 1–7. https://doi.org/10.1016/j.jviromet.2004.08.023.
Malorny, B., Tassios, P. T., Radstrom, P., Cook, N., Wagner, M., & Hoorfar, J. (2003). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology,83(1), 39–48.
Mikel, P., Vasickova, P., Tesarik, R., Malenovska, H., Kulich, P., Vesely, T., et al. (2016). Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Frontiers in Microbiology,7, 1911. https://doi.org/10.3389/fmicb.2016.01911.
Monjure, C. J., Tatum, C. D., Panganiban, A. T., Arainga, M., Traina-Dorge, V., Marx, P. A., Jr., et al. (2014). Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA. Journal of Medical Primatology,43(1), 31–43. https://doi.org/10.1111/jmp.12088.
Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., et al. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology,35(4), 995–998.
Niesters, H. G. M. (2002). Clinical virology in real time. Journal of Clinical Virology,25(3), 3–12.
Pasloske, B. L., Walkerpeach, C. R., Obermoeller, R. D., Winkler, M., & DuBois, D. B. (1998). Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. Journal of Clinical Microbiology,36(12), 3590–3594.
Pisani, G., Marino, F., Cristiano, K., Bisso, G. M., Mele, C., Luciani, F., et al. (2008). External quality assessment for the detection of HCV RNA, HIV RNA and HBV DNA in plasma by nucleic acid amplification technology: a novel approach. Vox Sanguinis,95(1), 8–12. https://doi.org/10.1111/j.1423-0410.2008.01047.x.
Polo, D., Varela, M. F., & Romalde, J. L. (2015). Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology,193, 43–50. https://doi.org/10.1016/j.ijfoodmicro.2014.10.007.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory.
Song, L., Sun, S., Li, B., Pan, Y., Li, W., Zhang, K., et al. (2011). External quality assessment for enterovirus 71 and coxsackievirus A16 detection by reverse transcription-PCR using armored RNA as a virus surrogate. Journal of Clinical Microbiology,49(10), 3591–3595. https://doi.org/10.1128/jcm.00686-11.
Stals, A., Baert, L., Botteldoorn, N., Denayer, S., Mauroy, A., Scipioni, A., et al. (2012). Molecular detection and genotyping of noroviruses. Food and Environmental Virology,4(4), 153–167.
Stonehouse, N. J., Valegard, K., Golmohammadi, R., van den Worm, S., Walton, C., Stockley, P. G., et al. (1996). Crystal structures of MS2 capsids with mutations in the subunit FG loop. Journal of Molecular Biology,256(2), 330–339. https://doi.org/10.1006/jmbi.1996.0089.
Sun, Y., Jia, T., Sun, Y., Han, Y., Wang, L., Zhang, R., et al. (2013). External quality assessment for Avian Influenza A (H7N9) Virus detection using armored RNA. Journal of Clinical Microbiology,51(12), 4055–4059. https://doi.org/10.1128/jcm.02018-13.
Vasiljeva, I., Kozlovska, T., Cielens, I., Strelnikova, A., Kazaks, A., Ose, V., et al. (1998). Mosaic Qbeta coats as a new presentation model. FEBS Letters,431(1), 7–11.
Wei, B., Wei, Y., Zhang, K., Yang, C., Wang, J., Xu, R., et al. (2008a). Construction of armored RNA containing long-size chimeric RNA by increasing the number and affinity of the pac site in exogenous RNA and sequence coding coat protein of the MS2 bacteriophage. Intervirology,51(2), 144–150. https://doi.org/10.1159/000141707.
Wei, Y., Yang, C., Wei, B., Huang, J., Wang, L., Meng, S., et al. (2008b). RNase-resistant virus-like particles containing long chimeric RNA sequences produced by two-plasmid coexpression system. Journal of Clinical Microbiology,46(5), 1734–1740. https://doi.org/10.1128/jcm.02248-07.
Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environment Microbiology,63(10), 3741–3751.
Yu, X. F., Pan, J. C., Ye, R., Xiang, H. Q., Kou, Y., & Huang, Z. C. (2008). Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology,46(3), 837–841. https://doi.org/10.1128/jcm.01904-07.
Zhan, S., Li, J., Xu, R., Wang, L., Zhang, K., & Zhang, R. (2009). Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1. Journal of Clinical Microbiology,47(8), 2571–2576. https://doi.org/10.1128/jcm.00232-09.
Zhang, D., Sun, Y., Jia, T., Zhang, L., Wang, G., Zhang, R., et al. (2015). External quality assessment for the detection of measles virus by reverse transcription-PCR using armored RNA. PLoS ONE,10(8), e0134681. https://doi.org/10.1371/journal.pone.0134681.
Zhao, L., Ma, Y., Zhao, S., & Yang, N. (2007). Armored RNA as positive control and standard for quantitative reverse transcription-polymerase chain reaction assay for rubella virus. Archives of Virology,152(1), 219–224. https://doi.org/10.1007/s00705-006-0839-3.
Funding
This work was supported by National Key Research and Development Program of China (2017YFC1600703), Special Program for Science and Technology Basic Research of the Ministry of Science and Technology China (2013FY113300), National Shellfish Industry Technology System (CARS-47), and the National Key Project for Agro-product Quality and Safety Risk Assessment, PRC (No. GJFP 2019029).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yao, L., Li, F., Qu, M. et al. Development and Evaluation of a Novel Armored RNA Technology Using Bacteriophage Qβ. Food Environ Virol 11, 383–392 (2019). https://doi.org/10.1007/s12560-019-09400-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12560-019-09400-5


