Assessment of the Incidence of Human Adenovirus in Surface Waters of Southwest Greece: Vouraikos River as a Case Study

  • P. KokkinosEmail author
  • K. Katsanou
  • N. Lambrakis
  • A. Vantarakis
Brief Communication


The purpose of this study is to assess the overall impact of different anthropogenic activities in the Vouraikos River basin (southwestern Greece, Natura 2000 area). Virological quality of river water samples was investigated. Positive samples for human adenoviruses were found occasionally, while porcine adenoviruses and bovine polyoma viruses were not detected. It is the first time that virological data are collected in the study area.


Human adenovirus Assessment Vouraikos River Public health Karst terrain 



This work is part of the project ‘Inventory of the National Park Chelmos-Vouraikos water resources and evaluation of its geodiversity’ that was co-financed by the Management Body of Chelmos-Vouraikos. We are grateful to the President and the personnel of the Management Body of of Chelmos-Vouraikos for their excellent collaboration during the course of the project.


  1. Albinana-Gimenez, N., Clemente-Casares, P., Bofill-Mas, S., Hundesa, A., Ribas, F., & Girones, R. (2006). Distribution of human polyomaviruses, adenoviruses, and hepatitis E virus in the environment and in a drinking-water treatment plant. Environmental Science and Technology, 40(23), 7416–7422.CrossRefGoogle Scholar
  2. Bakalowicz, M., Fleury, P., Dörfliger, N., & Seidel, J. L. (2003). Coastal karst aquifers in Mediterranean regions. In J. A. López-Geta, J. de Dios Gómez, J. A. de la Orden, G. Ramos, & L. Rodríguez (Eds.), Tecnología de la intrusión de agua de mar en acuíferoscosteros: paísesmediterráneos (pp. 125–128). Madrid: Instituto Geológico y Minero de España.Google Scholar
  3. Bofill-Mas, S., Albiñana-Gimenez, N., Clemente-Casares, P., Hundesa, A., Rodriguez-Manzano, J., Allard, A., et al. (2006). Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Applied and Environmental Microbiology, 72(12), 7894–7896.CrossRefGoogle Scholar
  4. Bouwknegt, M., Verhaelen, K., Rzeżutka, A., Kozyra, I., Maunula, L., von Bonsdorff, C. H., et al. (2015). Quantitative farm-to-fork risk assessment model for norovirus and hepatitis A virus in European leafy green vegetable and berry fruit supply chains. International Journal of Food Microbiology, 198, 50–58.CrossRefGoogle Scholar
  5. Civita, M. (2008). An improved method for delineating source protection zones for karst springs based on analysis of recession curve data. Hydrogeology Journal, 16, 855.CrossRefGoogle Scholar
  6. Hundesa, A., Maluquer de Motes, C., Albinana-Gimenez, N., Rodriguez-Manzano, J., Bofill-Mas, S., Suñen, E., et al. (2009). Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. Journal of Virological Methods, 158(1–2), 130–135.CrossRefGoogle Scholar
  7. Hundesa, A., Bofill-Mas, S., Maluquer de Motes, C., Rodriguez-Manzano, J., Bach, A., Casas, M., et al. (2010). Development of a quantitative PCR assay for the quantitation of bovine polyomavirus as a microbial source-tracking tool. Journal of Virological Methods, 163(2), 385–389.CrossRefGoogle Scholar
  8. Kagalou, I., Leonardos, I., Anastasiadou, C., & Neofytou, C. (2012). The DPSIR approach for an integrated river management framework. A preliminary application on a Mediterranean Site (Kalamas River—NW Greece). Water Resources Management, 26(6), 1677–1692.CrossRefGoogle Scholar
  9. Karadima, C., Theodoropoulos, C., Rouvalis, A., & Iliopoulou-Georgudaki, J. (2010). Ecological risk assessment of cheese whey effluents along a medium-sized river in southwest Greece. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 45(6), 775–781.CrossRefGoogle Scholar
  10. Katsanou, K. (2018). Hellenic Karst aquifers vulnerability approach using factor analysis: the example of the Louros karst aquifers. Geosciences, 8(11), 417.CrossRefGoogle Scholar
  11. Katsanou, K., Lambrakis, N., D’Alessandro, W., & Siavalas, G. (2017). Chemical parameters as natural tracers in hydrogeology: A case study of Louros Karst System, Greece. Hydrogeology Journal, 25(2), 487–499.CrossRefGoogle Scholar
  12. Kokkinos, P., Ziros, P., Meri, D., Filippidou, S., Kolla, S., Galanis, A., et al. (2011). Environmental surveillance. An additional/alternative approach for virological surveillance in Greece? International Journal of Environmental Research and Public Health, 8(6), 1914–1922.CrossRefGoogle Scholar
  13. Kokkinos, P., Bouwknegt, M., Verhaelen, K., Willems, K., Moloney, R., de Roda Husman, A. M., et al. (2015a). Virological fit-for-purpose risk assessment in a leafy green production enterprise. Food Control, 51, 333–339.CrossRefGoogle Scholar
  14. Kokkinos, P., Mandilara, G., Nikolaidou, A., Velegraki, A., Theodoratos, P., Kampa, D., et al. (2015b). Performance of three small-scale wastewater treatment plants. A challenge for possible re use. Environmental Science and Pollution Research International, 22(22), 17744–17752.CrossRefGoogle Scholar
  15. Kokkinos, P., Karayanni, H., Meziti, A., Feidaki, R., Paparrodopoulos, S., & Vantarakis, A. (2018). Assessment of the virological quality of marine and running surface waters in NW Greece: A case study. Food and Environmental Virology, 10(3), 316–326.CrossRefGoogle Scholar
  16. Panagopoulos, G., & Lambrakis, N. (2006). The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). Hydrogeology Journal, 329, 368–376.CrossRefGoogle Scholar
  17. Pina, S., Puig, M., Lucena, F., Jofre, J., & Girones, R. (1998). Viral pollution in the environment and shellfish: Human adenovirus detection by PCR as an index of human viruses. Applied and Environmental Microbiology, 64(9), 3376–3382.Google Scholar
  18. Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S., et al. (2012). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 36(4), 786–814.CrossRefGoogle Scholar
  19. Rusiñol, M., Fernandez-Cassi, X., Hundesa, A., Vieira, C., Kern, A., Eriksson, I., et al. (2014). Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Research, 59, 119–129.CrossRefGoogle Scholar
  20. Sibanda, T., & Okoh, Al. (2012). Assessment of the incidence of enteric adenovirus species and serotypes in surface waters in the eastern cape province of South Africa: Tyume River as a case study. Scientific World Journal, 2012, 949216. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Kokkinos
    • 1
    Email author
  • K. Katsanou
    • 2
  • N. Lambrakis
    • 2
  • A. Vantarakis
    • 1
  1. 1.Environmental Microbiology Unit, Department of Public HealthUniversity of RioPatrasGreece
  2. 2.Laboratory of Hydrogeology, Section of Applied Geology and Geophysics, Department of GeologyUniversity of PatrasPatrasGreece

Personalised recommendations