Use of F-Specific RNA Bacteriophage to Estimate Infectious Norovirus Levels in Oysters

Abstract

Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus in oysters using the quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) are well established, and various studies using RT-qPCR have detected norovirus in a considerable proportion of oyster samples, both in the UK and elsewhere. However, RT-qPCR detects viral genome, and by its nature is unable to discriminate between positive results caused by infectious viruses and those caused by non-infectious remnants including damaged virus particles and naked RNA. As a result, a number of alternative or complementary approaches to RT-qPCR testing have been proposed, including the use of infectious viral indicator organisms, most frequently F-specific RNA bacteriophage (F-RNA phage). In this study, we investigated the relationships between F-RNA phage and norovirus in digestive tissues from two sets of oyster samples, one randomly collected at retail (630 samples), and one linked to suspected norovirus illness outbreaks (nine samples). A positive association and correlation between PCR-detectable levels of genogroup II F-RNA bacteriophage (associated with human faecal contamination) and norovirus was found in both sets of samples, with more samples positive for genogroup II phage, at generally higher levels than norovirus. Levels of both viruses were higher in outbreak-related than retail samples. Infectious F-RNA phage was detected in 47.8% of all retail samples, and for a subset of 224 samples where characterisation of phage was carried out, infectious GII phage was detected in 30.4%. Infectious GII phage was detected in all outbreak-related samples. Determination of infectivity ratios by comparing levels of PCR-detectable (copies/g) and infectious GII phage (pfu/g) revealed that in the majority of cases less than 10% of virus detected by RT-qPCR was infectious. Application of these ratios to estimate infectious norovirus levels indicated that while 77.8% of outbreak-related samples contained > 5 estimated infectious norovirus/g, only 13.7% of retail samples did. Use of a combination of levels of PCR-detectable norovirus and infectious F-RNA phage showed that while only 7.0% of retail samples contained both > 100 copies/g norovirus and > 10 pfu/g F-RNA phage, these combined levels were present in 77.8% of outbreak-related samples, and 75.9% of retail samples with > 5 estimated infectious norovirus/g. We therefore suggest that combining RT-qPCR testing with a test for infectious F-RNA phage has the potential to better estimate health risks, and to better predict the presence of infectious norovirus than RT-qPCR testing alone.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anonymous (2004). Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Official Journal of European Communities, L226, 83–127.

    Google Scholar 

  2. Anonymous (2013). Microbiology of food and animal feed -- Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR -- Part 1: Method for quantification. In ISO/TS 15216-1:2013. Geneva: International Organization for Standardization.

    Google Scholar 

  3. Anonymous, 2015. National Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish, 2015 Revision. https://www.fda.gov/food/guidanceregulation/federalstatefoodprograms/ucm2006754.htm.

  4. Anonymous (2017). Microbiology of the food chain -- Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR -- Part 1: Method for quantification. In ISO 15216-1:2017. Geneva: International Organization for Standardization.

    Google Scholar 

  5. Beekwilder, J., Nieuwenhuizen, R., Havelaar, A. H., & van Duin, J. (1996). An oligonucleotide hybridization assay for the identification and enumeration of F-specific RNA phages in surface water. Journal of Applied Bacteriology, 80, 179–186.

    Article  CAS  PubMed  Google Scholar 

  6. Bellou, M., Kokkinos, P., & Vantarakis, A. (2013). Shellfish-borne viral outbreaks: A systematic review. Food and Environmental Virology, 5, 13–23.

    Article  CAS  PubMed  Google Scholar 

  7. Bosch, A., Pintó, R. M., & Abad, F. X. (2006). Survival and transport of enteric viruses in the environment. In S. M. Goyal (Ed.), Viruses in foods. food microbiology and food safety (pp. 151–187). Boston: Springer.

    Google Scholar 

  8. Cole, D., Long, S. C., & Sobsey, M. D. (2003). Evaluation of F + RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Applied and Environmental Microbiology, 69, 6507–6514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costafreda, M. I., Bosch, A., & Pintó, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72, 3846–3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. da Silva, A. K., Le Saux, J. C., Parnaudeau, S., Pommepuy, M., Elimelech, M., & Le Guyader, F. S. (2007). Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Applied and Environmental Microbiology, 73, 7891–7897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dancer, D., Rangdale, R. E., Lowther, J. A., & Lees, D. N. (2010). Human norovirus RNA persists in seawater under simulated winter conditions but does not bioaccumulate efficiently in Pacific oysters (Crassostrea gigas). Journal of Food Protection, 73, 2123–2127.

    Article  CAS  PubMed  Google Scholar 

  12. Dancho, B. A., Chen, H., & Kingsley, D. H. (2012). Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. International Journal of Food Microbiology, 155, 222–226.

    Article  CAS  PubMed  Google Scholar 

  13. Doré, W. J., Henshilwood, K., & Lees, D. N. (2000). Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Applied and Environment Microbiology, 66, 1280–1285.

    Article  Google Scholar 

  14. Doré, W. J., Mackie, M., & Lees, D. N. (2003). Levels of male-specific RNA bacteriophage and Escherichia coli in molluscan bivalve shellfish from commercial harvesting areas. Letters Applied Microbiology, 36, 92–96.

    Article  Google Scholar 

  15. Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., Neill, F. H., Blutt, S. E., Zeng, X. L., Qu, L., Kou, B., Opekun, A. R., Burrin, D., Graham, D. Y., Ramani, S., Atmar, R. L., & Estes, M. K. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353, 1387–1393.

    Article  PubMed  PubMed Central  Google Scholar 

  16. European Food Safety Authority Panel on Biological Hazards. (2012). Scientific Opinion on Norovirus (NoV) in oysters: methods, limits and control options. EFSA Journal, 10, 2500.

    Article  CAS  Google Scholar 

  17. Flannery, J., Keaveney, S., & Doré, W. (2009). Use of FRNA bacteriophages to indicate the risk of norovirus contamination in Irish oysters. Journal of Food Protection, 72, 2358–2362.

    Article  CAS  PubMed  Google Scholar 

  18. Hartard, C., Banas, S., Loutreul, J., Rincé, A., Benoit, F., Boudaud, N., & Gantzer, C. (2016). Relevance of F-specific RNA bacteriophages in assessing human norovirus risk in shellfish and environmental waters. Applied and Environmental Microbiology, 82, 5709–5719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hassard, F., Sharp, J. H., Taft, H., LeVay, L., Harris, J. P., McDonald, J. E., Tuson, K., Wilson, J., Jones, D. L., & Malham, S. K. (2017). Critical Review on the Public Health Impact of Norovirus Contamination in Shellfish and the Environment: A UK Perspective. Food and Environmental Virology, 9, 123–141.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Havelaar, A. H., & Hogeboom, W. M. (1984). A method for the enumeration of male-specific bacteriophages in sewage. Journal of Applied Bacteriology, 56, 439–447.

    Article  CAS  PubMed  Google Scholar 

  21. Havelaar, A. H., Hogeboom, W. M., & Pot, R. (1985). F specific RNA bacteriophages in sewage: Methodology and occurrence. Water Science and Technology, 17, 645–655.

    Article  Google Scholar 

  22. Hewitt, J., Leonard, M., Greening, G. E., & Lewis, G. D. (2011). Influence of wastewater treatment process and the population size on human virus profiles in wastewater. Water Research, 45, 6267–6276.

    Article  CAS  PubMed  Google Scholar 

  23. Hoehne, M., & Schreier, E. (2006). Detection of Norovirus genogroup I and II by multiplex real-time RT- PCR using a 3′-minor groove binder-DNA probe. BMC Infectious Diseases, 6, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau, K. R., Gonzalez-Hernandez, M. B., Iovine, N. M., Wobus, C. E., Vinjé, J., Tibbetts, S. A., Wallet, S. M., & Karst, S. M. (2014). Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 346, 755–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F., Takeda, N., & Katayama, K. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41, 1548–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knight, A., Li, D., Uyttendaele, M., & Jaykus, L. A. (2013). A critical review of methods for detecting human noroviruses and predicting their infectivity. Critical Reviews in Microbiology, 39, 295–309.

    Article  CAS  PubMed  Google Scholar 

  27. Langlet, J., Kaas, L., & Greening, G. (2015). Binding-based RT-qPCR assay to assess binding patterns of noroviruses to shellfish. Food and Environmental Virology, 7, 88–95.

    Article  CAS  Google Scholar 

  28. Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virololgical Methods, 123, 1–7.

    Article  CAS  Google Scholar 

  29. Lowther, J. A., Avant, J. M., Gizynski, K., Rangdale, R. E., & Lees, D. N. (2010). Comparison between quantitative real-time reverse transcription PCR results for norovirus in oysters and self-reported gastroenteric illness in restaurant customers. Journal of Food Protection, 73, 305–311.

    Article  CAS  PubMed  Google Scholar 

  30. Lowther, J. A., Gustar, N. E., Hartnell, R. E., & Lees, D. N. (2012a). Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels. Journal of Food Protection, 75, 389–393.

    Article  CAS  PubMed  Google Scholar 

  31. Lowther, J. A., Gustar, N. E., Powell, A. L., Hartnell, R. E., & Lees, D. N. (2012b). Two-year systematic study to assess norovirus contamination in oysters from commercial harvesting areas in the United Kingdom. Applied and Environmental Microbiology, 78, 5812–5817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lowther, J. A., Gustar, N. E., Powell, A. L., O’Brien, S., & Lees, D. N. (2018). A One Year Survey of Norovirus in UK Oysters Collected at the Point of Sale. Food and Environmental Virology, 10, 278–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lytle, C. D., & Sagripanti, J. L. (2005). Predicted inactivation of viruses of relevance to biodefense by solar radiation. Journal of Virology, 79, 14244–14252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miossec, L., Le Guyader, F., Pelletier, D., Haugarreau, L., Caprais, M. P., & Pommepuy, M. (2001). Validity of Escherichia coli, enterovirus, and F-specific RNA bacteriophages as indicators of viral shellfish contamination. Journal of Shellfish Research, 20, 1223–1227.

    Google Scholar 

  35. National Research Council (US) Committee on indicators for waterborne pathogens. 2004. Indicators for waterborne pathogens. National Academies Press. Washington.

  36. Nuanualsuwan, S., & Cliver, D. O. (2002). Pretreatment to avoid positive RT-PCR results with inactivated viruses. Journal of Virological Methods, 104, 217–225.

    Article  CAS  PubMed  Google Scholar 

  37. Polo, D., Varela, M. F., & Romalde, J. L. (2015). Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology, 193, 43–50.

    Article  PubMed  Google Scholar 

  38. Randazzo, W., Khezri, M., Ollivier, J., Le Guyader, F. S., Rodríguez-Díaz, J., Aznar, R., & Sánchez, G. (2018). Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 266, 1–7.

    Article  PubMed  Google Scholar 

  39. Suffredini, E., Lanni, L., Arcangeli, G., Pepe, T., Mazzette, R., Ciccaglioni, G., & Croci, L. (2014). Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy. International Journal of Food Microbiology, 184, 21–26.

    Article  PubMed  Google Scholar 

  40. Svraka, S., Duizer, E., Vennema, H., de Bruin, E., van der Veer, B., Dorresteijn, B., & Koopmans, M. (2007). Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. Journal of Clinical Microbiology, 45, 1389–1394.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Teunis, P. F., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., Le Pendu, J., & Calderon, R. L. (2008). Norwalk virus: how infectious is it? Journal of Medical Virology, 80, 1468–1476.

    Article  PubMed  Google Scholar 

  42. Toze, S. (1999). PCR and the detection of microbial pathogens in water and wastewater. Water Research, 33, 3545–3556.

    Article  CAS  Google Scholar 

  43. van Duin, J., & Olsthoorn, R. C. L. (2011). Family—Leviviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens & E. J. Lefkowitz (Eds.), Virus taxonomy—Ninth report of the international committee on taxonomy of viruses (pp. 1035–1043). Amsterdam: Elsevier.

    Google Scholar 

  44. Wolf, S., Hewitt, J., Rivera-Aban, M., & Greening, G. E. (2008). Detection and characterization of F + RNA bacteriophages in water and shellfish: Application of a multiplex real-time reverse transcription PCR. Journal of Virological Methods, 149, 123–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the United Kingdom Food Standards Agency project FS101040: “Assessing the contribution made by the food chain to the burden of UK-acquired norovirus infection (NoVAS)”. The authors thank the NoVAS Consortium for helpful comments on the manuscript. The NoVAS Consortium in addition to the authors comprises the University of Liverpool (Sarah O’Brien, Miren Iturriza-Gomara), the University of East Anglia (Paul Hunter, Jim Maas), Public Health England (David James Allen, Nicola Elviss, Andrew Fox), Leatherhead Food Research (Angus Knight), and Fera Science Ltd. (Nigel Cook, Martin D’Agostino).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Lowther.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lowther, J.A., Cross, L., Stapleton, T. et al. Use of F-Specific RNA Bacteriophage to Estimate Infectious Norovirus Levels in Oysters. Food Environ Virol 11, 247–258 (2019). https://doi.org/10.1007/s12560-019-09383-3

Download citation

Keywords

  • Norovirus
  • Infectivity
  • F-specific RNA bacteriophage
  • Oysters
  • qRT-PCR