Abstract
Berries have repeatedly been associated with outbreaks of hepatitis A virus (HAV) infection. The fruits are usually minimally processed in the food industry due to their delicate nature. While washing treatments partially remove enteric viruses, the commonly used chemical additives produce toxic by-products. A valid alternative to preserve the food safety of these products could be the use of essential oils (EOs). EOs exert antimicrobial activity and do not interfere with the nutritional characteristics of food products. We investigated the efficacy of four essential oils, lemon (Citrus limon), sweet orange (Citrus sinensis), grapefruit (Citrus paradisi), and rosemary cineole (Rosmarinus officinalis chemotype 1.8 cineole) in reducing viral loads of HAV in soft fruits. Mixed fruit berries were inoculated with 106.74 TCID50/ml of HAV, and treated with four different EOs (0.5% lemon, 0.1% sweet orange and grapefruit, and 0.05% rosemary) for 1 h at room temperature. Virus infectivity was then assessed by titration assays for its ability to grow on cell cultures. A statistically significant reduction in HAV titer on the fruit surface was observed after treating the berries with EOs of lemon (2.84 log TCID50/ml), grapefruit (2.89 log TCID50/ml), and rosemary cineole (2.94 log TCID50/ml). Rosemary cineole was the most effective EO in reducing viral titer on berries, followed by grapefruit EO. These results improve our knowledge about the antiviral activity of these EOs and highlight their potential use in fresh produce sanitation.
This is a preview of subscription content, access via your institution.
References
Baert, L., Debevere, J., & Uyttendaele, M. (2009). The efficacy of preservation methods to inactivate foodborne viruses. International Journal of Food Microbiology, 131(2–3), 83–94.
Burnett, S. L., & Beuchat, L. R. (2001). Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. Journal of Industrial Microbiology & Biotechnology, 27(2), 104–110.
Butot, S., Putallaz, T., & Sanchez, G. (2008). Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. International Journal of Food Microbiology, 126(1–2), 30–35.
Carter, M. J. (2005). Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection. Journal of Applied Microbiology, 98(6), 1354–1380.
Casteel, M. J., Schmidt, C. E., & Sobsey, M. D. (2008). Chlorine disinfection of produce to inactivate hepatitis A virus and coliphage MS2. International Journal of Food Microbiology, 125(3), 267–273.
Chatziprodromidou, I. P., Bellou, M., Vantarakis, G., & Vantarakis, A. (2018). Viral outbreaks linked to fresh produce consumption: a systematic review. Journal of Applied Microbiology, 124(4), 932–942.
Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines (Basel), 4(3), 58.
EFSA. (2013). Hepatitis A virus infection in four Nordic countries, 15 April 2013. Joint ECDC/EFSA rapid outbreak assessment.
Elizaquível, P., Azizkhani, M., Aznar, R., & Sánchez, G. (2013). The effect of essential oils on norovirus surrogates. Food Control, 32(1), 275–278.
Fabra, M. J., Castro-Mayorga, J. L., Randazzo, W., Lagarón, J. M., López-Rubio, A., Aznar, R., & Sánchez, G. (2016). Efficacy of cinnamaldehyde against enteric viruses and its activity after incorporation into biodegradable multilayer systems of interest in food packaging. Food and Environmental Virology, 8(2), 125–132.
Felix-Valenzuela, L., Resendiz-Sandoval, M., Burgara-Estrella, A., Hernández, J., & Mata-Haro, V. (2012). Quantitative detection of hepatitis A, rotavirus and genogroup I norovirus by RT-qPCR in fresh produce from packinghouse facilities. Jounal of Food Safety, 32(4), 467–473.
Fino, V. R., & Kniel, K. E. (2008). UV light inactivation of hepatitis A virus, Aichi virus, and feline calicivirus on strawberries, green onions and lettuce. Jounal of Food Protection, 71(5), 908–913.
Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19(3), 156–164.
Fitzgerald, M., Thornton, L., O’Gorman, J., O’Connor, L., Garvey, P., Boland, M., Part, A. M., et al. Hepatitis, A., Outbreak Control Team (2014). Outbreak of hepatitis A infection associated with the consumption of frozen berries, Ireland, 2013-linked to an international outbreak. Euro Surveillance, 30(43), pii: 20942. 19 ).
Fraisse, A., Temman, S., Deboosere, N., Guillier, L., Delobel, A., Maris, P., Vialette, M., et al. (2001). Comparison of chlorine and peroxyacetic-based disinfectant to inactivate Feline calicivirus, Murine norovirus and hepatitis A virus on lettuce. International Journal of Food Microbiology, 151(1), 98–104.
Gavanji, S., Sayedipour, S. S., Larki, B., & Bakhtari, A. (2015). Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. Journal of Acute Medicine, 5(3), 62–68.
Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45.
Gillesberg Lassen, S., Soborg, B., Midgley, S. E., Steens, A., Vold, L., Stene-Johansen, K., Rimhanen-Finne, R., et al. (2013). Ongoing multi-strain food-borne hepatitis A outbreak with frozen berries as suspected vehicle: four Nordic countries affected, October 2012 to April 2013. Euro Surveillance, 18(17), 20467.
Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116(5), 1149–1163.
Hoskins, J. M. (1975). Diagnosi virologica principi e metodi. Milano: Casa Editrice Ambrosiana.
Joshi, S. S., Howell, A. B., & D’Souza, D. H. (2016). Reduction of enteric viruses by blueberry juice and blueberry proanthocyanidins. Food and Environmental Virology, 8(4), 235–243.
Kim, Y. W., You, H. J., Lee, S., Kim, B., Kim, D. K., Choi, J. B., Kim, J. A., et al. (2017). Inactivation of norovirus by lemongrass essential oil using a norovirus surrogate system. Jounal of Food Protection, 80(8), 1293–1302.
Kovač, K., Diez-Valcarce, M., Raspor, P., Hernández, M., & Rodríguez-Lázaro, D. (2012). Natural plant essential oils do not inactivate non-enveloped enteric viruses. Food and Environmental Virology, 4(4), 209–212.
Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science & Technology, 15, 201–208.
Laranjo, M., Fernández-Léon, A. M., Potes, M. E., Agulheiro-Santos, A. C., & Elias, M. (2017). Use of essential oils in food preservation. In Antimicrobial Research: Novel bioknowledge and educational programs (Microbiology Book Series #6) (pp. 177–188). Badajoz: Edited by A. Méndez-Vilas, Formatex Research Center. http://www.microbiology6.org/ebook.php.
Lee, J. Y., Jang, S., Aguilar, L. E., Park, C. H., & Kim, C. S. (2019). Structural packaging technique using biocompatible nanofiber with essential oil to prolong the shelf-life of fruit. Journal of Nanoscience and Nanotechnology, 19(4), 2228–2231.
Lee, M. H., Lee, B. H., Lee, S., & Choi, C. (2013). Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. Journal of Food Science, 78(9), 1412–1415.
Li, D., Baert, L., & Uyttendaele, M. (2013). Inactivation of food-borne viruses using natural biochemical substances. Food Microbiology, 35(1), 1–9.
Martínez, K., Ortiz, M., Albis, A., Gilma Gutiérrez Castañeda, C., Valencia, M. E., & Grande Tovar, C. D. (2018). The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules. 21,8(4).
Maunula, L., Kaupke, A., Vasickova, P., Söderberg, K., Kozyra, I., Lazic, S., van der Poel, W. H., et al. (2013). Tracing enteric viruses in the European berry fruit supply chain. International Journal of Food Microbiology, 167(2), 177–185.
Nieto, G. (2017). Biological activities of three essential oils of the Lamiaceae family. Medicines (Basel), 4(3), 63.
Nolkemper, S., Reichling, J., Stintzing, F. C., Carle, R., & Schnitzler, P. (2006). Antiviral effect of aqueous extracts from species of the Laminaceae Family against Herpes simplex Virus type 1 and type 2 in vitro. Planta Medica, 72(15), 1378–1382.
Ozogul, Y., Kuley, E., Ucar, Y., & Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1), 53–61.
Piątkowska, E., & Rusiecka-Ziółkowska, J. (2016). Influence of essential oils on infectious agents. Advances in Clinical and Experimental Medicine, 25(5), 989–995.
Randazzo, W., Falco, I., Aznar, R., & Sànchez, G. (2017). Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food microbiology, 66, 150–156.
Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoint. American Journal of Hygiene, 27(3), 493–497.
Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties: an overview. Forschende Komplementarmedizin, 16(2), 79–90.
Richardson, S. (1998). Drinking water disinfection by-products. In: Encyclopedia of environmental analysis and remediation. In R. A. Meyers (Ed.), Encyclopedia of environmental analysis and remediation (Vol. 3, pp. 1398–1421). New York: Wiley.
Sánchez, C., Aznar, R., & Sánchez, G. (2015). The effect of carvacrol on enteric viruses. International Journal of Food Microbiology, 192, 72–76.
Sánchez, G. (2015). Processing strategies to inactivate hepatitis A virus in food products: a critical review. Comprehensive Reviews in Food Science and Food Safety, 14(6), 771–784.
Sánchez, G., & Aznar, R. (2015). Evaluation of natural compounds of plant origin for inactivation of enteric viruses. Food and Environmental Virology, 7(2), 183–187.
Sánchez, G., Bosch, A., & Pintó, R. M. (2007). Hepatitis A virus detection in food: current and future prospects. Letters in Applied Microbiology, 45(1), 1–5.
Satyal, P., Jones, T. H., Lopez, E. M., McFeeters, R. L., Ali, N. A., Mansi, I., Al-Kaf, A. G., & Setzer, W. N. (2017). Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods, 6(3), 20.
Scavia, G., Alfonsi, V., Taffon, S., Escher, M., Bruni, R., Medici, D., Pasquale, S. D., et al. National Italian Task Force On Hepatitis A (2017). A large prolonged outbreak of hepatitis A associated with consumption of frozen berries, Italy, 2013-14. Journal of medical microbiology, 66(3), 342–349.
Serrano, M., Martinez-Romero, D., Guillén, F., Valverde, J. M., Zapata, P. J., Castillo, S., & Valero, D. (2008). The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends in Food Science & Technology, 19, 464e471.
Sirocchi, V., Devlieghere, F., Peelman, N., Sagratini, G., Maggi, F., Vittori, S., & Ragaert, P. (2017). Effect of Rosmarinus officinalis L. essential oil combined with different packaging conditions to extend the shelf life of refrigerated beef meat. Food Chemistry, 221, 1069–1076.
Su, X., & D’Souza, D. H. (2011). Grape seed extract for control of human enteric viruses. Applied and Environmental Microbiology, 77(12), 3982–3987.
Tavoschi, L., Severi, E., Niskanen, T., Boelaert, F., Rizzi, V., Liebana, E., Dias, G., et al. (2015). Food-borne diseases associated with frozen berries consumption: a historical perspective, European Union, 1983 to 2013. Euro Surveillance, 20(29), 21193.
Tullio, V., Mandras, N., Allizond, V., Nostro, V., Roana, J., Merlino, C., Banche, et al. (2012). Positive interaction of Thyme (Red) essential oil with human ply-morphonuclear granulocytes in eradicating intracellular Candida albicans. Planta Medica, 78(15), 1633–1635.
Tzortzakis, N. G. (2007). Maintaining postharvest quality of fresh produce with volatile compounds. Innovative Food Science & Emerging Technologies, 8, 111e116.
Ulukanli, Z., & Oz, A. T. (2015). The effect of oleum myrtle on the fruit quality of strawberries during MAP storage. Journal of Food Science and Technology, 52(5), 2860–2868.
Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Review in Food Science & Nutrition, 55(10), 1320–1323.
Vicente, R. A., & Sozzi, G. (2007). Ripening and postharvest storage of ‘soft fruits’. Fruit, Vegetable and Cereal Science and Biotechnology, 1, 95–103.
Yezli, S., & Otter, J. (2011). Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food and Environmental Virology, 3(1), 1–30.
Acknowledgements
This study was supported by Grants from the Italian Ministry of Health (IZS PLV 14/13).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Battistini, R., Rossini, I., Ercolini, C. et al. Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits. Food Environ Virol 11, 90–95 (2019). https://doi.org/10.1007/s12560-019-09367-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12560-019-09367-3