Skip to main content
Log in

Effect of the Shellfish Proteinase K Digestion Method on Norovirus Capsid Integrity

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Norovirus outbreaks are associated with the consumption of contaminated shellfish, and so efficient methods to recover and detect infectious norovirus in shellfish are important. The Proteinase K digestion method used to recover norovirus from shellfish, as described in the ISO 15216, would be a good candidate but its impact on the virus capsid integrity and thus infectivity was never examined. The aim of this study was to assess the impact of the Proteinase K digestion method, and of the heat treatment component of the method alone, on norovirus (genogroups I and II) and MS2 bacteriophage capsid integrity. A slightly modified version of the ISO method was used. RT-qPCR was used for virus detection following digestion of accessible viral RNA using RNases. MS2 phage infectivity was measured using a plaque assay. The effect of shellfish digestive glands (DG) on recovery was evaluated. In the presence of shellfish DG, a reduction in MS2 phage infectivity of about 1 log10 was observed after the Proteinase K digestion method and after heat treatment component alone. For norovirus GII and MS2 phage, there was no significant loss of genome following the Proteinase K digestion method but there was a significant 0.24 log10 loss of norovirus GI. In the absence of shellfish DG, the reduction in MS2 phage infectivity was about 2 log10, with the addition of RNases resulting in a significant loss of genome for all tested viruses following complete Proteinase K digestion method and the heat treatment alone. While some protective effect from the shellfish DG on viruses was observed, the impact on capsid integrity and infectivity suggests that this method, while suitable for norovirus genome detection, may not completely preserve virus infectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bae, J., & Schwab, K. J. (2008). Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Applied and Environmental Microbiology, 74(2), 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, I., Schijven, J., Sanchez, G., Wyn-Jones, P., Ottoson, J., Morin, T., et al. (2012). The impact of temperature on the inactivation of enteric viruses in food and water: A review. Journal of Applied Microbiology, 112(6), 1059–1074.

    Article  PubMed  CAS  Google Scholar 

  • Betzel, C., Bellemann, M., Pal, G., Bajorath, J., Saenger, W., & Wilson, K. (1988). X-ray and model-building studies on the specificity of the active site of proteinase K. Proteins: Structure, Function, and Bioinformatics, 4(3), 157–164.

    Article  CAS  Google Scholar 

  • Bidawid, S., Farber, J. M., Sattar, S. A., & Hayward, S. (2000). Heat inactivation of hepatitis A virus in dairy foods. Journal of Food Protection, 63(4), 522–528.

    Article  PubMed  CAS  Google Scholar 

  • Brié, A., Bertrand, I., Meo, M., Boudaud, N., & Gantzer, C. (2016). The effect of heat on the physicochemical properties of bacteriophage MS2. Food and Environmental Virology, 8(4), 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Comelli, H. L., Rimstad, E., Larsen, S., & Myrmel, M. (2008). Detection of norovirus genotype I.3b and II.4 in bioaccumulated blue mussels using different virus recovery methods. International Journal of Food Microbiology, 127(1–2), 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Croci, L., Ciccozzi, M., De Medici, D., Di Pasquale, S., Fiore, A., Mele, A., et al. (1999). Inactivation of hepatitis A virus in heat-treated mussels. Journal of Applied Microbiology, 87(6), 884–888.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, D. J., Paish, A., Staffell, L. M., Seymour, I. J., & Appleton, H. (2005). Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. Journal of Applied Microbiology, 98(1), 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Duizer, E., Schwab, K. J., Neill, F. H., Atmar, R. L., Koopmans, M. P., & Estes, M. K. (2004). Laboratory efforts to cultivate noroviruses. The Journal of General Virology, 85(Pt 1), 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., & Lang, H. (1974). Proteinase K from Tritirachium album Limber. European Journal of Biochemistry, 47(1), 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., et al. (2016). Replication of human noroviruses in stem cell–derived human enteroids. Science, 353(6306), 1387–1393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields, B. N., Knipe, D. M., & Howley, P. M. (2013). Fields virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  • Filppi, J. A., & Banwart, G. J. (1974). Effect of the fat content of ground beef on the heat inactivation of poliovirus. Journal of Food Science and Technology, 39(5), 865–868.

    Google Scholar 

  • Greening, G., & Hewitt, J. (2008). Norovirus detection in shellfish using a rapid, sensitive virus recovery and real-time RT-PCR detection protocol. Food Analytical Methods, 1(2), 109–118.

    Article  Google Scholar 

  • Hewitt, J., & Greening, G. E. (2006). Effect of heat treatment on hepatitis A virus and norovirus in New Zealand greenshell mussels (Perna canaliculus) by quantitative real-time reverse transcription PCR and cell culture. Journal of Food Protection, 69(9), 2217–2223.

    Article  PubMed  Google Scholar 

  • Hewitt, J., Rivera-Aban, M., & Greening, G. E. (2009). Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. Journal of Applied Microbiology, 107(1), 65–71.

    Article  PubMed  CAS  Google Scholar 

  • ISO (1995). ISO 10705-1:1995 Water quality—detection and enumeration of bacteriophages—Part 1: Enumeration of F-specific RNA bacteriophages.

  • ISO (2013). ISO/TS 15216–2:2013. Microbiology of food and animal feed—Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR, Part 2: Method for qualitative detection.

  • ISO (2017). ISO 15216–1:2017. Microbiology of the food chain—Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR, Part 1: Method for quantitative detection.

  • Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau, K. R., et al. (2014). Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 346(6210), 755–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jothikumar, N., Lowther, J. A., Henshilwood, K., Lees, D. N., Hill, V. R., & Vinjé, J. (2005). Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Applied and Environmental Microbiology, 71(4), 1870–1875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroneman, A., Vennema, H., Deforche, K., Avoort, H., Penaranda, S., Oberste, M. S., et al. (2011). An automated genotyping tool for enteroviruses and noroviruses. Journal of Clinical Virology, 51(2), 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Langlet, J., Gaboriaud, F., Duval, J. F., & Gantzer, C. (2008). Aggregation and surface properties of F-specific RNA phages: implication for membrane filtration processes. Water Research, 42(10–11), 2769–2777.

    Article  PubMed  CAS  Google Scholar 

  • Langlet, J., Kaas, L., & Greening, G. (2015). Binding-based RT-qPCR assay to assess binding patterns of noroviruses to shellfish. Food and Environmental Virology, 7(2), 88–95.

    Article  CAS  Google Scholar 

  • Le Guyader, F. S., Bon, F., DeMedici, D., Parnaudeau, S., Bertone, A., Crudeli, S., et al. (2006). Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. Journal of Clinical Microbiology, 44(11), 3878–3882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees, D. (2010). International standardisation of a method for detection of human pathogenic viruses in molluscan shellfish. Food and Environmental Virology, 2(3), 146–155.

    Article  Google Scholar 

  • Lopman, B. A., Brown, D. W., & Parry, J. V. (1987). Studies on heat inactivation of hepatitis A virus with special reference to shellfish. Part 1. Procedures for infection and recovery of virus from laboratory-maintained cockles. Epidemiology and Infection, 98(3), 397–414.

    Article  Google Scholar 

  • Nuanualsuwan, S., & Cliver, D. O. (2002). Pretreatment to avoid positive RT-PCR results with inactivated viruses. Journal of Virological Methods, 104(2), 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Nuanualsuwan, S., & Cliver, D. O. (2003). Capsid functions of inactivated human picornaviruses and feline calicivirus. Applied and Environmental Microbiology, 69(1), 350–357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parshionikar, S., Laseke, I., & Fout, G. S. (2010). Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Applied and Environmental Microbiology, 76(13), 4318–4326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pecson, B. M., Martin, L. V., & Kohn, T. (2009). Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results. Applied and Environmental Microbiology, 75(17), 5544–5554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prato, R., Lopalco, P. L., Chironna, M., Barbuti, G., Germinario, C., & Quarto, M. (2004). Norovirus gastroenteritis general outbreak associated with raw shellfish consumption in South Italy. BMC Infectious Diseases, 4(37), 1–6.

    Google Scholar 

  • Sano, D., Pinto, R. M., Omura, T., & Bosch, A. (2010). Detection of oxidative damages on viral capsid protein for evaluating structural integrity and infectivity of human norovirus. Environmental Science and Technology, 44(2), 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Shirasaki, N., Matsushita, T., Matsui, Y., Urasaki, T., & Ohno, K. (2009). Comparison of behaviors of two surrogates for pathogenic waterborne viruses, bacteriophages Qbeta and MS2, during the aluminum coagulation process. Water Research, 43(3), 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Stals, A., Baert, L., Van Coillie, E., & Uyttendaele, M. (2012). Extraction of food-borne viruses from food samples: A review. International Journal of Food Microbiology, 153(1–2), 1–9.

    Article  PubMed  Google Scholar 

  • Wigginton, K. R., Pecson, B. M., Sigstam, T., Bosshard, F., & Kohn, T. (2012). Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity. Environmental Science and Technology, 46(21), 12069–12078.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, S., Hewitt, J., & Greening, G. E. (2010). Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Applied and Environmental Microbiology, 76(5), 1388–1394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Business, Innovation and Employment (MBIE) (Safe New Zealand Seafood. CAWX1317 Project 15330). The authors would like to thank Dr Gail Greening and Dr Pradip Gyawali for their critical review of the manuscript. Thanks also to Jim Dollimore for kindly providing Pacific oysters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Langlet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlet, J., Kaas, L., Croucher, D. et al. Effect of the Shellfish Proteinase K Digestion Method on Norovirus Capsid Integrity. Food Environ Virol 10, 151–158 (2018). https://doi.org/10.1007/s12560-018-9336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-018-9336-6

Keywords

Profiles

  1. Joanne Hewitt