Skip to main content

Advertisement

Log in

Coxsackievirus B4 as a Causative Agent of Diabetes Mellitus Type 1: Is There a Role of Inefficiently Treated Drinking Water and Sewage in Virus Spreading?

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

This study proposed to detect the enterovirus (EV) infection in children with type 1 diabetes mellitus (T1D) and to assess the role of insufficiently treated water and sewage as sources of viral spreading. Three hundred and eighty-two serum specimens of children with T1D, one hundred serum specimens of children who did not suffer from T1D as control, and forty-eight water and sewage samples were screened for EV RNA using nested RT-PCR. The number of genome copies and infectious units of EVs in raw and treated sewage and water samples were investigated using real-time (RT)-PCR and plaque assay, respectively. T1D markers [Fasting blood glucose (FBG), HbA1c, and C-peptide], in addition to anti-Coxsackie A & B viruses (CVs A & B) IgG, were measured in control, T1D-negative EV (T1D–EV), and T1D-positive EV (T1D–EV+) children specimens. The prevalence of EV genome was significantly higher in diabetic children (26.2%, 100 out of 382) than the control children (0%, 0 out of 100). FBG and HbA1c in T1D–EV and T1D–EV+ children specimens were significantly higher than those in the control group, while c-peptide in T1D–EV and T1D–EV+ children specimens was significantly lower than that in the control (n = 100; p < 0.001). Positivity of anti-CVs A & B IgG was 70.7, 6.7, and 22.9% in T1D–EV+, T1D–EV, and control children specimens, respectively. The prevalence of EV genome in drinking water and treated sewage samples was 25 and 33.3%, respectively. The prevalence of EV infectious units in drinking water and treated sewage samples was 8.5 and 25%, respectively. Quantification assays were performed to assess the capabilities of both wastewater treatment plants (WWTPs) and water treatment plants (WTPs) to remove EV. The reduction of EV genome in Zenin WWTP ranged from 2 to 4 log10, while the reduction of EV infectious units ranged from 1 to 4 log10. The reduction of EV genome in El-Giza WTP ranged from 1 to 3 log10, while the reduction of EV infectious units ranged from 1 to 2 log10. This capability of reduction did not prevent the appearance of infectious EV in treated sewage and drinking water. Plaque purification was performed for isolation of separate EV isolates from treated and untreated water and sewage samples. Characterization of the EV amplicons by RT-PCR followed by sequencing of these isolates revealed high homology (97%) with human coxsackievirus B4 (CV B4) in 60% of the isolates, while the rest of the isolates belonged to poliovirus type 1 and type 2 vaccine strains. On the other hand, characterization of the EV amplicons by RT-PCR followed by sequencing for T1D–EV+ children specimens indicated that all samples contained CV B4 with the same sequence characterized in the environmental samples. CV B4-contaminated drinking water or treated sewage may play a role as a causative agent of T1D in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad, F. X., Pintó, R. M., Villena, C., Gajardo, R., & Bosch, A. (1997). Astrovirus survival in drinking water. Applied and Environment Microbiology, 63, 3119–3122.

    CAS  Google Scholar 

  • Bergamin, C. S., & Dib, S. A. (2015). Enterovirus and type 1 diabetes: What is the matter? World Journal Diabetes, 6(6), 828–839.

    Article  Google Scholar 

  • Blatchley, E. R., III, Gong, W. L., Alleman, J. E., Rose, J. B., Huffman, D. E., Otaki, M., et al. (2007). Effects of wastewater disinfection on waterborne bacteria and viruses. Water Environment Research, 79, 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Bosch, A. (2007). Human viruses in water (1st ed.). Amsterdam, Boston: Elsevier.

    Google Scholar 

  • Cabrera-Rode, E., Sarmiento, L., Molina, G., Pe´rez, C., Arranz, C., Galvan, J., et al. (2005). Islet cell related antibodies and type 1 diabetes associated with echovirus 30 epidemic: A case report. Journal of Medical Virology, 76, 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Campbell-Thompson, M. L., Atkinson, M. A., Butler, A. E., Chapman, N. M., Frisk, G., Gianani, R., et al. (2013). The diagnosis of insulitis in human type 1 diabetes. Diabetologia, 56, 2541–2543.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, J. L., Kirkman, M. S., Laffel, L. M. B., & Peters, A. L. (2014). Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care, 37(7), 2034–2054.

    Article  PubMed  Google Scholar 

  • Clements, G. B., Galbraith, D. N., & Taylor, K. W. (1995). Coxsackie B virus infection and onset of childhood diabetes. Lancet, 346, 221–223.

    Article  CAS  PubMed  Google Scholar 

  • Costan-Longares, A., Moce-Llivina, L., Avellon, A., Jofre, J., & Lucena, F. (2008). Occurrence and distribution of culturable enteroviruses in wastewater and surface waters of north-eastern Spain. Journal of Applied Microbiology, 105(6), 1945–1955.

    Article  CAS  PubMed  Google Scholar 

  • Coutant, R., Carel, J. C., Lebon, P., Bougnères, P. F., Palmer, P., & Cantero-Aguilar, L. (2000). Detection of enterovirus RNA sequences in serum samples from autoantibody-positive subjects at risk for diabetes. Diabetic Medicine, 19(11), 968–976.

    Article  Google Scholar 

  • Craig, M. E., Howard, N. J., Silink, M., & Rawlinson, W. D. (2003). Reduced frequency of HLA DRB1*03DQB1*02 in children with type 1 diabetes associated with enterovirus RNA. Journal of Infectious Diseases, 187(10), 1562–1570.

    Article  CAS  PubMed  Google Scholar 

  • Dahling, D. (1991). Detection and enumeration of enteric viruses in cell culture. Critical Reviews Environmental Contamination, 21, 237–263.

    Article  Google Scholar 

  • Dotta, F., Censini, S., & van Halteren, A. G. (2007). Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proceedings of the National academy of Sciences of the United States of America, 104, 5115–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle, M. P., & Erickson, M. C. (2008). Summer meeting 2007—the problems with fresh produce: An overview. Journal of Applied Microbiology, 105, 317–330.

    Article  CAS  PubMed  Google Scholar 

  • El-Senousy, W. M., & Abou-Elela, S. I. (2017). Assessment and evaluation of an integrated hybrid anaerobic-aerobic sewage treatment system for the removal of Enteric viruses. Food and Environmental Virology, 9(3), 287–303.

    Article  CAS  PubMed  Google Scholar 

  • El-Senousy, W. M., Barakat, A. B., Ghanem, H. E., & Kamel, M. A. (2013a). Molecular epidemiology of human adenoviruses and rotaviruses as candidate viral indicators in the Egyptian sewage and water samples. World Applied Sciences Journal, 27, 1235–1247.

    Google Scholar 

  • El-Senousy, W. M., Costafreda, M. I., Pinto, R. M., & Bosch, A. (2013b). Method validation for norovirus detection in naturally contaminated irrigation water and fresh produce. International Journal of Food Microbiology, 167, 74–79.

    Article  CAS  PubMed  Google Scholar 

  • El-Senousy, W. M., Guix, S., Abid, I., Pintó, R. M., & Bosch, A. (2007). Removal of astrovirus from water and sewage treatment plants, evaluated by a competitive reverse transcription-PCR. Applied and Environment Microbiology, 73, 164–167.

    Article  CAS  Google Scholar 

  • El-Senousy, W. M., Ragab, A. M. E., & Handak, E. M. A. (2015). Prevalence of Rotaviruses groups A and C in Egyptian children and aquatic environment. Food and Environmental Virology, 7(2), 132–141.

    Article  CAS  Google Scholar 

  • Figueiredo, R. M. (1999). Programa de redução de patógenos. Manual de procedimentos e desenvolvimento. São Paulo: Editora Manole, 1, 166.

  • Fong, T. T., & Lipp, E. K. (2005). Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiology and Molecular Biology Reviews, 69, 357–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman, J. A., Liang, X., & Noble, R. T. (2005). Rapid detection of enteroviruses in small volumes of natural waters by real-time quantitative reverse transcriptase PCR. Applied and Environment Microbiology, 71(8), 4523–4530.

    Article  CAS  Google Scholar 

  • Gilgen, M., Wegmuller, B., Burkhalter, P., Buhler, H. P., Muller, U., & Luthy, J. (1995). Reverse transcription PCR to detect enteroviruses in surface water. Applied and Environment Microbiology, 61(4), 1226–1231.

    CAS  Google Scholar 

  • Goto, A., Takahashi, Y., Kishimoto, M., Nakajima, Y., Nakanishi, K., Kajio, H., et al. (2008). A case of fulminant type 1 diabetes associated with significant elevation of mumps titers. Endocrine Journal, 55(3), 561–564.

    Article  PubMed  Google Scholar 

  • Greening, G. E., Hewitt, J., & Lewis, G. D. (2002). Evaluation of integrated cell culture-PCR (C-PCR) for virological analysis of environmental samples. Journal of Applied Microbiology, 93, 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, J. B., Litaker, R. W., & Noble, R. T. (2006). Rapid one-step quantitative reverse transcriptase PCR assay with competitive internal positive control for detection of enteroviruses in environmental samples. Applied and Environmental Microbiology, 72(6), 3960–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hober, D., & Sauter, P. (2010). Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host. Natural Reviews Endocrinology, 6, 279–289.

    Article  Google Scholar 

  • Hot, D., Legeay, O., & Jacques, J. (2003). Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water. Water Research, 37, 4703–4710.

    Article  CAS  PubMed  Google Scholar 

  • Ismail, N. A., Abd El Baky, A. N., Ragab, S., Hamed, M., Hashish, M. A., & Shehata, A. (2016). Monocyte chemoattractant protein 1 and macrophage migration inhibitory factor in children with type 1 diabetes. Journal of Pediatric Endocrinology and Metabolism, 29, 641–650.

    Article  PubMed  Google Scholar 

  • Jaïdane, H., & Hober, D. (2008). Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes and Metabolism, 34, 537–548.

    Article  PubMed  Google Scholar 

  • Jung, J. H., Yoo, C. H., Koo, E. S., Kim, H. M., Na, Y., & Jheong, W. H. (2011). Occurrence of norovirus and other enteric viruses in untreated groundwaters of Korea. Journal of Water Health, 9(3), 544–555.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, H., Ihara, T., Ioi, H., Oana, S., Sato, S., Kato, N., et al. (2004). Enterovirus-related type 1 diabetes mellitus and antibodies to glutamic acid decarboxylase in Japan. Journal of Infection, 49(2), 147–151.

    Article  PubMed  Google Scholar 

  • Krogvold, L., Edwin, B., Buanes, T., Frisk, G., Skog, O., Anagandula, M., et al. (2015). Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes, 64(5), 1682–1687.

    Article  CAS  PubMed  Google Scholar 

  • Kukkula, M., Maunula, L., Silvennoinen, E., & von Bonsdorff, C. H. (1999). Outbreak of viral gastroenteritis due to drinking water contaminated by Norwalk-like viruses. The Journal of Infectious Diseases, 180, 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  • La Rosa, G., Pourshaban, M., Iaconelli, M., & Muscillo, M. (2010). Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Annali Ist Super Sanità, 46(3), 266–273.

    Google Scholar 

  • Laitinen, O. H., Honkanen, H., & Pakkanen, O. (2014). Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes, 63, 446–555.

    Article  CAS  PubMed  Google Scholar 

  • Lempainen, J., Tauriainen, S., & Vaarala, O. (2012). Interaction of enterovirus infection and cow’s milk-based formula nutrition in type 1 diabetes-associated autoimmunity. Diabetes Metabolism Research Review, 28, 177–185.

    Article  CAS  Google Scholar 

  • Lewis, G. D., & Metcalf, T. G. (1988). Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Applied and Environment Microbiology, 54, 1983–1988.

    CAS  Google Scholar 

  • Li, J., Predmore, A., Divers, E., & Lou, F. (2012). New interventions against human norovirus: Progress, opportunities, and challenges. Annual Review of Food Science and Technology, 3, 331–352.

    Article  CAS  PubMed  Google Scholar 

  • Lönnrot, M., Korpela, K., & Knip, M. (2000). Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort. Diabetes, 49, 1314–1318.

    Article  PubMed  Google Scholar 

  • Lynch, M. F., Tauxe, R. V., & Hedberg, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: Risks and opportunities. Epidemiology and Infection, 137, 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Maha, M. M., Ali, M. A., Abdel-Rehim, S. E., Abu-Shady, E. A., El-Naggar, B. M., & Maha, Y. Z. (2003). The role of coxsackie viruses infection in the children of insulin dependent diabetes mellitus. Journal Egyptian Public Health Association, 78, 305–318.

    CAS  Google Scholar 

  • Moya-Suri, V., Schlosser, M., Zimmermann, K., Rjasanowski, I., Gurtler, L., & Mentel, R. (2005). Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1 diabetes-associated autoantibodies. Journal of Medical Microbiology, 54(9), 879–883.

    Article  CAS  PubMed  Google Scholar 

  • Nairn, C., Galbraith, D. N., Taylor, K. W., & Clements, G. B. (1999). Enterovirus variants in the serum of children at the onset of type 1 diabetes mellitus. Diabetic Medicine, 16, 509–513.

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen, S., Martiskainen, M., & Tauriainen, S. (2011). Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes, 60, 276–279.

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen, S., Tauriainen, S., & Hober, D. (2014). Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes, 63, 655–662.

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen, M., Tauriainen, S., & Oikarinen, S. (2012). Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes, 61, 687–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaventsis, D., Siafakas, N., Markoulatos, P., Papageorgiou, G. T., Kourtis, C., & Chatzichristou, E. (2005). Membrane adsorption with direct cell culture combined with reverse transcription-PCR as a fast method for identifying enteroviruses from sewage. Applied and Environment Microbiology, 71, 72–79.

    Article  CAS  Google Scholar 

  • Patterson, C. C., Gyurus, E., & Rosenbauer, J. (2012). Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: Evidence of non-uniformity over time in rates of increase. Diabetologia, 55, 2142–2147.

    Article  CAS  PubMed  Google Scholar 

  • Podewils, L. J., Zanardi, B. L., Hagenbuch, M., Itani, D., Burns, A., Otto, C., et al. (2007). Outbreak of norovirus illness associated with a swimming pool. Epidemiology and Infection, 135, 827–833.

    Article  CAS  PubMed  Google Scholar 

  • Prim, N., Rodriguez, G., Margall, N., Del Cuerpo, M., Tallero, G., & Rabella, N. (2013). Combining cell lines to optimize isolation of human enterovirus from clinical specimens: Report of 25 years of experience. Journal of Medical Virology, 85, 116–120.

    Article  PubMed  Google Scholar 

  • Puig, M., Jofre, J., Lucena, F., Allard, A., Wadell, G., & Girones, R. (1994). Detection of adenoviruses and enteroviruses in polluted waters by nested PCR amplification. Applied and Environment Microbiology, 60, 2963–2970.

    CAS  Google Scholar 

  • Richter, J., Tryfonos, C., & Christodoulou, C. (2011). Circulation of enteroviruses in Cyprus assessed by molecular analysis of clinical specimens and sewage isolates. Journal of Applied Microbiology, 111(2), 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. A., Gundy, P. M., & Gerba, C. P. (2008). Comparison of BGM and PLC/PRC/5 cell lines for total culturable viral assay of treated sewage. Applied and Environment Microbiology, 74, 2583–2587.

    Article  CAS  Google Scholar 

  • Roivainen, M. (2006). Enteroviruses: New findings on the role of enteroviruses in type 1 diabetes. International Journal of Biochemistry & Cell Biology, 38, 721–725.

    Article  CAS  Google Scholar 

  • Roivainen, M., Blomqvist, S., Al-Hello, H., Paananen, A., Delpeyroux, F., & Kuusi, M. (2010). Highly divergent neurovirulent vaccine-derived polioviruses of all three serotypes are recurrently detected in Finnish sewage. Eurosurveillance Weekly, 15(19), 19566.

    Google Scholar 

  • Rose, J. B., Singh, S. N., Gerba, C. P., & Kelley, L. M. (1984). Comparison of microporous filters for concentration of viruses from wastewater. Applied and Environment Microbiology, 47, 989–992.

    CAS  Google Scholar 

  • Salminen, K., Sadeharju, K., & Lonnrot, M. (2003). Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study. Journal of Medical Virology, 69, 91–98.

    Article  PubMed  Google Scholar 

  • Sarmiento, L., Cabrera-Rode, E., Lekuleni, L., Cuba, I., Molina, G., Fonseca, M., et al. (2007). Occurrence of enterovirus RNA in serum of children with newly diagnosed type 1 diabetes and islet cell autoantibody-positive subjects in a population with a low incidence of type 1 diabetes. Autoimmunity, 40(7), 540–545.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke, M., Knorre, C., Blei, L., Stelzner, A., & Birch-Hirschfeld, E. (1998). Penetration and antiviral activity of coxsackievirus B3 (Cvb3)-specific phosphorothioate oligodeoxynucleotides (Ps-Odn). Nucleosides & Nucleotides, 17, 1557–1566.

    Article  CAS  Google Scholar 

  • Simmons, F. J., Kuo, D. H., & Xagoraraki, I. (2011). Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing. Water Research, 45(9), 2739–2750.

    Article  CAS  PubMed  Google Scholar 

  • Smith, E. M., & Gerba, C. P. (1982). Development of a method for detection of human rotavirus in water and sewage. Applied and Environment Microbiology, 43, 1440–1450.

    CAS  Google Scholar 

  • Stene, L. C., Oikarinen, S., & Hyoty, H. (2010). Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes, 59, 3174–3180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauriainen, S., Oikarinen, S., Oikarinen, M., & Hyoty, H. (2011). Enteroviruses in the pathogenesis of type 1 diabetes. Seminars Immunopathology, 33, 45–55.

    Article  CAS  Google Scholar 

  • Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with alternative oxygen receptor. Annals of Clinical Biochemistry, 6, 24–27.

    Article  CAS  Google Scholar 

  • Tsai, E. B., Sherry, N. A., Palmer, J. P., & Herold, K. C. (2006). The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia, 49(2), 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Vivier, J. C., Ehlers, M. M., & Grabow, W. O. (2004). Detection of enteroviruses in treated drinking water. Water Research, 38(11), 699–705.

    Article  Google Scholar 

  • World Health Organization. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: A report of a WHO/IDF consultation. Geneva: World Health Organization.

    Google Scholar 

  • Xiao, F., Ma, L., Zhao, M., Huang, G., Mirenda, V., & Dorling, A. (2014). Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice. PLoS ONE, 9, e90387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung, W. C., Rawlinson, W. D., & Craig, M. E. (2011). Enterovirus infection and type 1 diabetes mellitus: systematic review and metaanalysis of observational molecular studies. BMJ, 342, d35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Centre (NRC) for supporting this work through Grant No. 10110202, and the Principal Investigator Prof. Dr. Waled Morsy El-Senousy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waled M. El-Senousy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Senousy, W.M., Abdel-Moneim, A., Abdel-Latif, M. et al. Coxsackievirus B4 as a Causative Agent of Diabetes Mellitus Type 1: Is There a Role of Inefficiently Treated Drinking Water and Sewage in Virus Spreading?. Food Environ Virol 10, 89–98 (2018). https://doi.org/10.1007/s12560-017-9322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9322-4

Keywords

Navigation