An Outbreak of Norovirus Infection from Shellfish Soup Due to Unforeseen Insufficient Heating During Preparation

Abstract

Norovirus causes large outbreaks involving all age groups and are considered the most common cause of infectious foodborne diseases worldwide. The aim of this study was to describe a norovirus outbreak connected to insufficient heat treatment during preparation of a shellfish soup in serving portions, during a company Christmas celebration in Norway, December 2013. A questionnaire sent to the employees, showed that 67 % (n = 43) of the celebration participants, reported gastrointestinal symptoms including stomach pain, vomiting, diarrhoea and light fever in the period between 24 and 48 h post celebration. Several dishes were served, including shellfish soup made with carpet shell clams (Tapes rhomboides) in porcelain cups. Consuming this soup, was the only significant risk factor for infection. Norovirus GI and GII were detected in the remaining raw shellfish. To mimic the time and temperature obtained during bivalve soup preparation, raw chopped shellfish tissue and raw cepa onion were added in porcelain cups tempered to 20 °C. To each of these cups, boiling soup base was added. The temperature in the shellfish tissue was continuously recorded, and showed a maximum of 49 °C in the period between 3 and 7 min after adding the boiling soup base. After 1 h the temperature was 30 °C. This time and temperature combination was obviously not sufficient for inactivation of norovirus present in the shellfish tissue. In conclusion, the heat-absorbing capacity of cold ingredients, utensils and table wear porcelain should not be underestimated during food production. Consumers who want to avoid eating raw shellfish, should not assume that the shellfish tissue in preparation as described in our study is adequately heat treated.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Allen, D. J., Iturriza-Gomara, M., & Brown, D. W. G. (2013). Advances in understanding of norovirus as a food- and waterborne pathogen and progress with vaccine development. In N. Cook (Ed.), Viruses in food and water—risk, surveillance and control (pp. 319–348). Cambridge: Woodhead Publishing.

    Google Scholar 

  2. Cook, N., & Richards, G. P. (2013). An introduction to food- and waterborne viral diseases. In N. Cook (Ed.), Viruses in food and water—risk, surveillance and control (pp. 3–18). Cambridge: Woodhead Publishing.

    Google Scholar 

  3. Croci, L., Suffredini, E., Di Pasquale, S., & Cozzi, L. (2012). Detection of norovirus and feline calicivirus in spiked molluscs subjected to heat treatments. Food Control, 25(1), 17–22. doi:10.1016/j.foodcont.2011.10.004.

    Article  Google Scholar 

  4. Dancer, D., Rangdale, R. E., Lowther, J. A., & Lees, D. N. (2010). Human norovirus RNA persists in seawater under simulated winter conditions but does not bioaccumulate efficiently in pacific oysters (Crassostrea gigas). Journal of Food Protection, 73(11), 2123–2127.

    CAS  PubMed  Google Scholar 

  5. Donaldson, E. F., Lindesmith, L. C., Lobue, A. D., & Baric, R. S. (2010). Viral shape-shifting: Norovirus evasion of the human immune system. Nature Reviews Microbiology, 8(3), 231–241. doi:10.1038/Nrmicro2296.

    CAS  Article  PubMed  Google Scholar 

  6. Dore, B., Keaveney, S., Flannery, J., & Rajko-Nenow, P. (2010). Management of health risks associated with oysters harvested from a norovirus contaminated area, Ireland, February–March 2010. Eurosurveillance, 15(19), 12–15.

    Google Scholar 

  7. Doultree, J. C., Druce, J. D., Birch, C. J., Bowden, D. S., & Marshall, J. A. (1999). Inactivation of feline calicivirus, a norwalk virus surrogate. Journal of Hospital Infection, 41(1), 51–57. doi:10.1016/S0195-6701(99)90037-3.

    CAS  Article  PubMed  Google Scholar 

  8. Duizer, E., Bijkerk, P., Rockx, B., de Groot, A., Twisk, F., & Koopmans, M. (2004). Inactivation of caliciviruses. Applied and Environmental Microbiology, 70(8), 4538–4543. doi:10.1128/Aem.70.8.4538-4543.2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. EC (2004). Regulation (EC) No. 854/2004 of the European Parliament and of the Council laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. In E. Union (Ed.), 854/2004 (Vol. 854/2004, pp. 83–127). Brussels, Belgium. The European Parliament and the Council of the European Union.

  10. Flannery, J., Rajko-Nenow, P., Winterbourn, J. B., Malham, S. K., & Jones, D. L. (2014). Effectiveness of cooking to reduce norovirus and infectious F-specific RNA bacteriophage concentrations in Mytilus edulis. Journal of Applied Microbiology, 117(2), 564–571. doi:10.1111/jam.12534.

    CAS  Article  PubMed  Google Scholar 

  11. Gerba, C. P., Kitajima, M., & Iker, B. (2013). Viral presence in waste water and sewage control methods. In N. Cook (Ed.), Viruses in food and water—risk, surveillance and control (pp. 293–315). Cambridge: Woodhead Publishing.

    Google Scholar 

  12. Johne, R., Pund, R. P., & Schrader, C. (2011). Experimental accumulation and persistence of norovirus, feline calicivirus and rotavirus in blue mussels (Mytilus edulis). Archiv Fur Lebensmittelhygiene, 62(4), 129–135. doi:10.2376/0003-925X-62-129.

    Google Scholar 

  13. Jones, M. K., Grau, K. R., Costantini, V., Kolawole, A. O., de Graaf, M., Freiden, P., et al. (2015). Human norovirus culture in B cells. Nature Protocols, 10(12), 1939–1947. doi:10.1038/nprot.2015.121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Koo, H. L., Ajami, N., Atmar, R. L., & DuPont, H. L. (2010). Noroviruses: The principal cause of foodborne disease worldwide. Discovery medicine, 10(50), 61–70.

    PubMed  PubMed Central  Google Scholar 

  15. Le Guyader, F. S., Neill, F. H., Dubois, E., Bon, F., Loisy, F., Kohli, E., et al. (2003). A semiquantitative approach to estimate norwalk-like virus contamination of oysters implicated in an outbreak. International Journal of Food Microbiology, 87(1–2), 107–112. doi:10.1016/S0168-1605(03)00058-8.

    Article  PubMed  Google Scholar 

  16. Lunestad, B. T., Frantzen, S., Svanevik, C. S., Roiha, I. S., & Duinker, A. (2016). Time trends in the prevalence of Escherichia coli and enterococci in bivalves harvested in Norway during 2007–2012. Food Control, 60, 289–295. doi:10.1016/j.foodcont.2015.08.001.

    Article  Google Scholar 

  17. Møhlenberg, F., & Riisgård, H. U. (1978). Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia, 17(2), 239–246.

    Article  Google Scholar 

  18. Park, S. Y., Bae, S. C., & Ha, S. D. (2015). Heat inactivation of a norovirus surrogate in cell culture lysate, abalone meat, and abalone viscera. Food and Environmental Virology, 7(1), 58–66. doi:10.1007/s12560-014-9176-y.

    Article  PubMed  Google Scholar 

  19. Patel, M. M., Widdowson, M. A., Glass, R. I., Akazawa, K., Vinje, J., & Parashar, U. D. (2008). Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infectious Diseases, 14(8), 1224–1231. doi:10.3201/eid1408.071114.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sinclair, R. G., Jones, E. L., & Gerba, C. P. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology, 107(6), 1769–1780. doi:10.1111/j.1365-2672.2009.04367.x.

    CAS  Article  PubMed  Google Scholar 

  21. Strohmeier, T., Strand, O., Alunno-Bruscia, M., Duinker, A., & Cranford, P. J. (2012). Variability in particle retention efficiency by the mussel Mytilus edulis. Journal of Experimental Marine Biology and Ecology, 412, 96–102. doi:10.1016/j.jembe.2011.11.006.

    Article  Google Scholar 

  22. White, P. A. (2014). Evolution of norovirus. Clinical Microbiology & Infection, 20(8), 741–745. doi:10.1111/1469-0691.12746.

    CAS  Article  Google Scholar 

  23. Woods, C. P., & Burkhardt, W, I. I. I. (2013). Preventing and controlling viral contamination of shellfish. In N. Cook (Ed.), Viruses in food and water—risk, surveillance and control (pp. 281–292). Cambridge: Woodhead Publishing.

    Google Scholar 

Download references

Authors’ contributions

Bjørn Tore Lunestad and Arne Duinker designed the case–control study and conducted the data analysis. Mette Myrmel conducted the virus detection. Bjørn Tore Lunestad, Arne Duinker, Cecilie Smith Svanevik, Amund Maage, Irja Sunde Roiha and Mette Myrmel prepared, revised and approved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bjørn Tore Lunestad.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lunestad, B.T., Maage, A., Roiha, I.S. et al. An Outbreak of Norovirus Infection from Shellfish Soup Due to Unforeseen Insufficient Heating During Preparation. Food Environ Virol 8, 231–234 (2016). https://doi.org/10.1007/s12560-016-9245-5

Download citation

Keywords

  • Norovirus
  • Norovirus outbreak
  • Carpet shell
  • Temperature tolerance