Food and Environmental Virology

, Volume 8, Issue 1, pp 57–69 | Cite as

Viruses Surveillance Under Different Season Scenarios of the Negro River Basin, Amazonia, Brazil

  • Carmen Baur Vieira
  • Adriana de Abreu Corrêa
  • Michele Silva de Jesus
  • Sérgio Luiz Bessa Luz
  • Peter Wyn-Jones
  • David Kay
  • Marta Vargha
  • Marize Pereira Miagostovich
Original Paper

Abstract

The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9 %, followed by JCPyV (69.5 %), RVA (23.9 %) and NoV GII (7.4 %). Viral concentrations ranged from 102 to 106 GC L−1 and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.

Keywords

Enteric viruses River water Flood Dry Amazon Negro River 

Notes

Acknowledgments

This work was funded by VIROCLIME Project (http://www.viroclime.org) as part of the Seventh Framework Programme, EU Contract Number 243923. This research work is within the scope of the activities of FIOCRUZ as a collaborating centre of PAHO/WHO of Public and Environmental Health.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahmed, S. M., Hall, A. J., Robinson, A. E., Verhoef, L., Premkumar, P., Parashar, U. D., et al. (2014). Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. The Lancet Infectious Diseases, 14(8), 725–730.CrossRefPubMedGoogle Scholar
  2. Albinana-Gimenez, N., Miagostovich, M. P., Calgua, B., Huguet, J. M., Matia, L., & Girones, R. (2009). Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water quality in source and drinking-water treatment plants. Water Research, 43(7), 2011–2019.CrossRefPubMedGoogle Scholar
  3. Aw, T. G., & Gin, K. Y. (2011). Prevalence and genetic diversity of waterborne pathogenic viruses in surface in surface waters of tropical urban catchments. Journal of Applied Microbiology, 110(4), 903–914.CrossRefPubMedGoogle Scholar
  4. Barril, P. A., Fumian, T. M., Prez, V. E., Gil, P. I., Martínez, L. C., Giordano, M. O., et al. (2015). Rotavirus seasonality in urban sewage from Argentina: effect of meteorological variables on the viral load and the genetic diversity. Environmental Research, 138, 409–415.CrossRefPubMedGoogle Scholar
  5. Barril, P. A., Giordano, M. O., Isa, M. B., Masachessi, G., Ferreyra, L. J., Castello, A. A., et al. (2010). Correlation between rotavirus A genotypes detected in hospitalized children and sewage samples in 2006, Córdoba, Argentina. Journal of Medical Virology, 82(7), 1277–1281.CrossRefPubMedGoogle Scholar
  6. Bofill-Mas, S., Albinana-Gimenez, N., Clemente-Casares, P., Hundesa, A., Rodriguez-Manzano, J., Allard, A., et al. (2006). Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Applied and Environmental Microbiology, 72(12), 7894–7896.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bofill-Mas, S., & Girones, R. (2003). Role of the environment in the transmission of JC virus. Journal of NeuroVirology, 9(Suppl 1), 54–58.CrossRefPubMedGoogle Scholar
  8. Bofill-Mas, S., Rusiñol, M., Fernandez-Cassi, X., Carratalà, A., Hundesa, A., & Girones, R. (2013). Quantification of human and animal viruses to differentiate the origin of the fecal contamination present in environmental samples. BioMed Research International, 2013, 192089.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Braeye, T., De Schrijver, K., Wollants, E., van Ranst, M., & Verhaegen, J. (2015). A large community outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, Belgium, 2010. Epidemiology & Infection, 143(4), 711–719.CrossRefGoogle Scholar
  10. Calgua, B., Barardi, C. R., Bofill-Mas, S., Rodriguez-Manzano, J., & Girones, R. (2011). Detection and quantification of infectious human adenoviruses and JC polyomaviruses in water by immunofluorescence assay. Journal of Virological Methods, 171(1), 1–7.CrossRefPubMedGoogle Scholar
  11. Calgua, B., Fumian, T., Rusiñol, M., Rodriguez-Manzano, J., Mbayed, V. A., Bofill-Mas, S., et al. (2013a). Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Research, 47(8), 2797–2810.CrossRefPubMedGoogle Scholar
  12. Calgua, B., Mengewein, A., Grunert, A., Bofill-Mas, S., Clemente-Casares, P., Hundesa, A., et al. (2008). Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. Journal of Virological Methods, 153(2), 79–83.CrossRefPubMedGoogle Scholar
  13. Calgua, B., Rodriguez-Manzano, J., Hundesa, A., Suñen, E., Calvo, M., Bofill-Mas, S., et al. (2013b). New methods for the concentration of viruses from urban sewage using quantitative PCR. Journal of Virological Methods, 187(2), 215–221.CrossRefPubMedGoogle Scholar
  14. Carvalho-Costa, F. A., Volotão, Ede M., de Assis, R. M., Fialho, A. M., de Andrade, Jda S., Rocha, L. N., et al. (2011). Laboratory-based rotavirus surveillance during the introduction of a vaccination program, Brazil, 2005–2009. Pediatric Infectious Disease Journal, 30(1 Suppl), S35–S41.CrossRefPubMedGoogle Scholar
  15. CONAMA—National Environment Council (Conselho Nacional do Meio Ambiente). (2000). Ministério do Meio Ambiente. Resolução 274 de 29 de novembro de 2000. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF.Google Scholar
  16. da Silva Soares, L., de Fátima Dos Santos Guerra, S., do Socorro Lima de Oliveira, A., da Silva Dos Santos, F., de Fátima Costa de Menezes, E. M., Mascarenhas, J. D., et al. (2014). Diversity of rotavirus strains circulating in Northern Brazil after introduction of a rotavirus vaccine: high prevalence of G3P[6] genotype. Journal of Medical Virology, 86(6), 1065–1072.CrossRefPubMedGoogle Scholar
  17. Di Bartolo, I., Pavoni, E., Tofani, S., Consoli, M., Galuppini, E., Losio, M. N., et al. (2015). Waterborne norovirus outbreak during a summer excursion in Northern Italy. New Microbiologica, 38(1), 109–112.PubMedGoogle Scholar
  18. Fioretti, J. M., Bello, G., Rocha, M. S., Victoria, M., Leite, J. P., & Miagostovich, M. P. (2014). Temporal dynamics of norovirus GII.4 variants in Brazil between 2004 and 2012. PLoS One, 9(3), e92988.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Fioretti, J. M., Ferreira, M. S., Victoria, M., Vieira, C. B., Xavier, Mda P., Leite, J. P., et al. (2011). Genetic diversity of noroviruses in Brazil. Memórias do Instituto Oswaldo Cruz, 106(8), 942–947.CrossRefPubMedGoogle Scholar
  20. Flannery, J., Keaveney, S., Rajko-Nenow, P., O’Flaherty, V., & Doré, W. (2012). Concentration of norovirus during wastewater treatment and its impact on oyster contamination. Applied and Environmental Microbiology, 78(9), 3400–3406.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Fong, T. T., & Lipp, E. K. (2005). Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiology and Molecular Biology Reviews, 69(2), 357–371.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Fong, T. T., Phanikumar, M. S., Xagoraraki, I., & Rose, J. B. (2010). Quantitative detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan river. Applied and Environmental Microbiology, 76(3), 715–723.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Frappart, F., Seyler, F., Martinez, J.-M., Leon, J. G., & Cazenave, A. (2005). Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, 99(4), 387–399.CrossRefGoogle Scholar
  24. Fumian, T. M., Leite, J. P., Rose, T. L., Prado, T., & Miagostovich, M. P. (2011). One year environmental surveillance of rotavirus specie A (RVA) genotypes in circulation after the introduction of the Rotarix® vaccine in Rio de Janeiro, Brazil. Water Research, 45(17), 5755–5763.CrossRefPubMedGoogle Scholar
  25. Fumian, T. M., Vieira, C. B., Leite, J. P., & Miagostovich, M. P. (2013). Assessment of burden of virus agents in an urban sewage treatment plant in Rio de Janeiro, Brazil. Journal of Water and Health, 11(1), 110–119.CrossRefPubMedGoogle Scholar
  26. Hernroth, B. E., Conden-Hansson, A. C., Rehnstam-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology, 68(9), 4523–4533.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hewitt, J., Greening, G. E., Leonard, M., & Lewis, G. D. (2013). Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Research, 47(17), 6750–6761.CrossRefPubMedGoogle Scholar
  28. IBGE—The Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). (2015). Retrieved May 10, 2015 from http://cidades.ibge.gov.br/xtras/perfil.php?codmun=130260.
  29. Jain, S., Vashistt, J., & Changotra, H. (2014). Rotaviruses: Is their surveillance needed? Vaccine, 32(27), 3367–3378.CrossRefPubMedGoogle Scholar
  30. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Leite, J. P., Carvalho-Costa, F. A., & Linhares, A. C. (2008). Group A rotavirus genotypes and the ongoing Brazilian experience: A review. Memórias do Instituto Oswaldo Cruz, 103(8), 745–753.CrossRefPubMedGoogle Scholar
  32. Levy, K., Hubbard, A. E., & Eisenberg, J. N. (2009). Seasonality of rotavirus disease in the tropics: A systematic review and meta-analysis. International Journal of Epidemiology, 38(6), 1487–1496.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Li, D., Gu, A. Z., Zeng, S. Y., Yang, W., He, M., & Shi, H. C. (2011). Monitoring and evaluation of infectious rotaviruses in various wastewater effluents and receiving waters revealed correlation and seasonal pattern of occurrences. Journal of Applied Microbiology, 110(5), 1129–1137.CrossRefPubMedGoogle Scholar
  34. Linhares, A. C., & Justino, M. C. (2014). Rotavirus vaccination in Brazil: Effectiveness and health impact seven years post-introduction. Expert Review of Vaccines, 13(1), 43–57.CrossRefPubMedGoogle Scholar
  35. Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods, 123(1), 1–7.CrossRefPubMedGoogle Scholar
  36. Magalhães, F., & Rojas, E. (2005). The re-urbanization of the city center of Manaus, Brazil—Facing the challenges of informal settlements. 41st ISoCaRP Congress. Bilbao.Google Scholar
  37. Marion, J. W., Lee, C., Lee, C. S., Wang, Q., Lemeshow, S., Buckley, T. J., et al. (2014). Integrating bacterial and viral water quality assessment to predict swimming-associated illness at a freshwater beach: A cohort study. PLoS One, 9(11), e112029.PubMedCentralCrossRefPubMedGoogle Scholar
  38. MDDA—Brazilian Program of Monitoring Acute Diarrheal Diseases (Programa Brasileiro de Monitorização das Doenças Diarreicas Agudas). (2015). Ministério da Saúde, Brasília, DF.Google Scholar
  39. Mellou, K., Katsioulis, A., Potamiti-Komi, M., Pournaras, S., Kyritsi, M., Katsiaflaka, A., et al. (2014). A large waterborne gastroenteritis outbreak in central Greece, March 2012: Challenges for the investigation and management. Epidemiology and Infection, 142(1), 40–50.PubMedGoogle Scholar
  40. Melo, G. Z. S., Costa, C. A., & Santos, I. G. C. (2013). Diversidade molecular de rotavírus do grupo A na cidade de Manaus, Estado do Amazonas, Brasil, 2004 a 2006. Epidemiologia e Serviços de Saúde, 22(2), 265–272.CrossRefGoogle Scholar
  41. Miagostovich, M. P., Ferreira, F. F., Guimarães, F. R., Fumian, T. M., Diniz-Mendes, L., Luz, S. L., et al. (2008). Molecular detection and characterization of gastroenteritis viruses occurring naturally in the stream waters of Manaus, central Amazonia, Brazil. Applied and Environmental Microbiology, 74(2), 375–382.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Myrmel, M., Lange, H., & Rimstad, E. (2015). A 1-year quantitative survey of Noro-, Adeno-, Human Boca-, and Hepatitis E viruses in raw and secondarily treated sewage from two plants in Norway. Food and Environmental Virology, 7(3), 213–223.CrossRefPubMedGoogle Scholar
  43. Norman, G., Pedley, S., & Takkouche, B. (2010). Effects of sewerage on diarrhoea and enteric infections: A systematic review and meta-analysis. The Lancet Infectious Diseases, 10(8), 536–544.CrossRefPubMedGoogle Scholar
  44. Pal, A., Sirota, L., Maudru, T., Peden, K., & Lewis, A. M. (2006). Real-time, quantitative PCR assays for the detection of virus-specific DNA in simples with mixed populations of polyomaviruses. Journal of Virological Methods, 135(1), 32–42.CrossRefPubMedGoogle Scholar
  45. PATH—Program for Appropriate Technology in Health. (2015). Retrieved July 10, 2015 from http://sites.path.org/rotavirusvaccine/files/2015/04/PATH-Worldwide-Rotavirus-Vaccine-Introduction-Map-geo-2015.04.01.jpg.
  46. Pina, S., Puig, M., Lucena, F., Jofre, J., & Girones, R. (1998). Viral pollution in the environment and in shellfish: Human adenovirus detection by PCR as an index of human viruses. Applied and Environmental Microbiology, 64(9), 3376–3382.PubMedCentralPubMedGoogle Scholar
  47. Port of Manaus (Porto de Manaus). (2015). Retrieved May 10, 2015 from http://www.portodemanaus.com.br/?pagina=niveis-maximo-minimo-do-rio-negro.
  48. Prevost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environment International, 79, 42–50.CrossRefPubMedGoogle Scholar
  49. PROSAMIM—Social and Environmental Program for the Igarapés in Manaus (Programa Ambiental e Social dos Igarapés de Manaus). PROGRAMA AMBIENTAL E SOCIAL DOS IGARAPÉS DE MANAUS (PROSAMIM III). Relatório de Gestão Ambiental e Social—RGAS. (2011). Luis Fernando Galli.Google Scholar
  50. PROSAMIM—Social and Environmental Program for the Igarapés in Manaus (Programa Social e Ambiental dos Igarapés de Manaus). PROSAMIM III—Igarapé São Raimundo Projeto Executivo. Igarapé São Raimundo, RIMA—Relatório de Impacto Ambiental—REV. 01. (2012). Governo do Estado do Amazonas, Secretaria de Estado de Infra-estrutura, Unidade de Gerenciamento de Programa Social e Ambiental dos Igarapés de Manaus (UGPI) e Concremat Engenharia.Google Scholar
  51. PROSAMIM—Social and Environmental Program for the Igarapés in Manaus (Programa Social e Ambiental dos Igarapés de Manaus). Relatório de Impacto Ambiental—RIMA. Manaus, Igarapé do Educandos. (2004). Governo do Estado do Amazonas, Secretaria de Estado de Infra-estrutura e Concremat Engenharia.Google Scholar
  52. Rodríguez-Díaz, J., Querales, L., Caraballo, L., Vizzi, E., Liprandi, F., Takiff, H., et al. (2009). Detection and characterization of waterborne gastroenteritis viruses in urban sewage and sewage-polluted river waters in Caracas, Venezuela. Applied and Environmental Microbiology, 75(2), 387–394.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Rohayem, J. (2009). Norovirus seasonality and the potential impact of climate change. Clinical Microbiology & Infection, 15(6), 524–527.CrossRefGoogle Scholar
  54. Rusiñol, M., Fernandez-Cassi, X., Hundesa, A., Vieira, C., Kern, A., Eriksson, I., et al. (2014). Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Research, 59, 119–129.CrossRefPubMedGoogle Scholar
  55. Satyamurty, P., Costa, C. P. W., Manzi, A. O., & Candido, L. A. (2013). A quick look at the 2012 record flood in the Amazon Basin. Geophysical Research Letters, 40(7), 1396–1401.CrossRefGoogle Scholar
  56. Silva, G. S., Bisinoti, M. C., Fadini, P. S., Magarelli, G., Jardim, W. F., & Fostier, A. H. (2009). Major aspects of the mercury cycle in the Negro River Basin, Amazon. Journal of the Brazilian Chemical Society, 20(6), 1127–1134.CrossRefGoogle Scholar
  57. Sinclair, R. G., Jones, E. L., & Gerba, C. P. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology, 107(6), 1769–1780.CrossRefPubMedGoogle Scholar
  58. SNIS—National Information System on Sanitation (Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos)—2013. (2014). Brasília: SNSA/MCIDADES.Google Scholar
  59. Vale, R., Filizola, N., Souza, R., & Schongart, J. (2011). A cheia de 2009 na Amazônia Brasileira. Revista Brasileira de Geociências, 41(4), 577–586.Google Scholar
  60. Victoria, M., Tort, L. F., García, M., Lizasoaim, A., Maya, L., Leite, J. P., et al. (2014). Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River, Uruguay. Food and Environmental Virology, 6(2), 116–124.CrossRefPubMedGoogle Scholar
  61. Villar, J. C. E., Ronchail, J., Guyot, J. L., Cochonneau, G., Filizola, N., Lavado, W., et al. (2009). Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology, 29(11), 1574–1594.CrossRefGoogle Scholar
  62. Villena, C., Gabrieli, R., Pintó, R. M., Guix, S., Donia, D., Buonomo, E., et al. (2003). A large infantile gastroenteritis outbreak in Albania caused by multiple emerging rotavirus genotypes. Epidemiology and Infection, 131(3), 1105–1110.PubMedCentralCrossRefPubMedGoogle Scholar
  63. WHO—World Health Organization. (2014). Preventing diarrhoea through better water, sanitation and hygiene: Exposures and impacts in low- and middle-income countries. Switzerland: World Health Organization.Google Scholar
  64. Wong, K., Mukherjee, B., Kahler, A. M., Zepp, R., & Molina, M. (2012). Influence of inorganic ions on aggregation and adsorption behaviors of human adenovirus. Environmental Science and Technology, 46(20), 11145–11153.CrossRefPubMedGoogle Scholar
  65. Wyer, M. D., Wyn-Jones, A. P., Kay, D., Au-Yeung, H. K., Gironés, R., López-Pila, J., et al. (2012). Relationships between human adenoviruses and faecal indicator organisms in European recreational waters. Water Research, 46(13), 4130–4141.CrossRefPubMedGoogle Scholar
  66. Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virological Methods, 153(2), 238–240.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carmen Baur Vieira
    • 1
  • Adriana de Abreu Corrêa
    • 1
  • Michele Silva de Jesus
    • 2
  • Sérgio Luiz Bessa Luz
    • 2
  • Peter Wyn-Jones
    • 3
  • David Kay
    • 3
  • Marta Vargha
    • 4
  • Marize Pereira Miagostovich
    • 1
  1. 1.Laboratório de Virologia Comparada e Ambiental Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil
  2. 2.Ecologia de Doenças Transmissíveis na AmazôniaInstituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ)ManausBrazil
  3. 3.Department of Geography and Earth Sciences (DGES)Aberystwyth University, Penglais CampusAberystwythUK
  4. 4.Department of Water HygieneNational Institute for Environmental HealthBudapestHungary

Personalised recommendations