Skip to main content

Advertisement

Log in

Propidium Monoazide Coupled with PCR Predicts Infectivity of Enteric Viruses in Swine Manure and Biofertilized Soil

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

The use of propidium monoazide (PMA) coupled with real-time PCR (RT-qPCR or qPCR for RNA or DNA viruses, respectively) was assessed to discriminate infectious enteric viruses in swine raw manure, swine effluent from anaerobic biodigester (AB) and biofertilized soils. Those samples were spiked either with infectious and heat-inactivated human adenovirus-2 (HAdV-2) or mengovirus (vMC0), and PMA-qPCR/RT-qPCR allowed discriminating inactivated viruses from the infective particles, with significant reductions (>99.9 %). Then, the procedure was further assayed to evaluate the presence and stability of two non-cultivable viruses (porcine adenovirus and rotavirus A) in natural samples (swine raw manure, swine effluent from AB and biofertilized soils); it demonstrated viral inactivation during the storage period at 23 °C. As a result, the combination of PMA coupled to real-time PCR can be a promising alternative for prediction of viral infectivity in comparison to more labour-intensive and costly techniques such as animal or tissue-culture infectivity methods, and for those viruses that do not have currently available cell culture techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bosch, A., Sánchez, G., Abbaszadegan, M., Carducci, A., Guix, S., Le Guyader, F., et al. (2011). Analytical methods for virus detection in water and food. Food Analytical Methods, 4(1), 4–12.

    Article  Google Scholar 

  • Choi, S., & Jiang, S. C. (2005). Real-time PCR quantification of human adenoviruses in urban rivers indicates genome prevalence but low infectivity. Applied and Environmental Microbiology, 71(11), 7426–7433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costafreda, M. I., Bosch, A., & Pintó, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72, 3846–3855.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coudray-Meunier, C., Fraisse, A., Martin-Latil, S., Guillier, L.,& Perelle, S. (2013). Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology, 13, 216. doi:10.1186/1471-2180-13-216.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cromeans, T. L., Lu, X. Y., Erdman, D. D., Humphrey, C. D., & Hill, V. R. (2008). Development of plaque assays for adenoviruses 40 and 41. Journal of Virological Methods, 151, 140–145.

    Article  CAS  PubMed  Google Scholar 

  • De Motes, C. M. P., Clemente-Casares, A., Hundesa, Martín M., & Girones, R. (2004). Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Applied and Environmental Microbiology, 70(3), 1448–1454.

    Article  Google Scholar 

  • Dika, C., Duval, J. F., Ly-Chatain, H. M., Merlin, C., & Gantzer, C. (2011). Impact of internal RNA on aggregation and electrokinetics of viruses: Comparison between MS2 phage and corresponding virus-like particles. Applied and Environmental Microbiology, 77(14), 4939–4948.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elizaquível, P., Aznar, R., & Sánchez, G. (2014). Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. Journal of Applied Microbiology, 116, 1–13.

    Article  PubMed  Google Scholar 

  • Ernest, C., Borden, G., Gary, William, Jr, & Frederick, A. M. (1970). Comparison of agar and agarose preparations for mengovirus plaque formation. Applied Microbiology, 20(2), 289–291.

    Google Scholar 

  • Fongaro, G., Viancelli, A., Magri, M. E., Elmahdy, E. M., Biesus, L. L., Kich, J. D., et al. (2014). Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Science and Total Environment, 479–480, 277–283.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2014). The state of food and agriculture—innovation in family farming, p. 161.

  • Hamza, A., Jurzik, L., Uberla, K., & Wilhelm, M. (2011). Methods to detect infectious human enteric viruses in environmental water samples. International Journal of Hygiene and Environmental Health, 214, 424–436.

    Article  PubMed  Google Scholar 

  • Hernroth, B. E., Conden-Hansson, A. C., Rehnstan-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology, 68, 4523–4533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hundesa, A., Maluquer de Motes, C., Albinana-Gimenez, N. C., Rodriguez-Manzano, J., Bofill-Mas, S., Suñen, E., et al. (2009). Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. Journal of Virological Methods, 158, 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Hundesa, A., Maluquer de Motes, C., Bofill-Mas, S., Albinana-Gimenez, N. C., & Girones, R. (2006). Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Applied and Environmental Microbiology, 72, 7886–7893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno, L., Aznar, R., & Sánchez, G. (2015). Application of viability PCR to discriminate the infectivity of hepatitis A virus in food samples. International Journal of Food Microbiology, 201, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Viet, H., Pham-Duc, P., Nguyen, V., Tanner, M., Odermatt, P., Vu-Van, T., et al. (2015). A one health perspective for integrated human and animal sanitation and nutrient recycling. In J. Zinsstag, E. Schelling, D. Waltner-Toews, M. Whittaker, & M. Tanner (Eds.), One health. The theory and practice of integrated health approaches (pp. 96–107). Boston: Cabi.

    Google Scholar 

  • Nocker, A., Cheung, C. Y., & Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67(2), 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Opriessnig, T., Yu, S., Gallup, J. M., Evans, R. B., Fenaux, M., Pallares, F., et al. (2003). Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus. Veterinary Pathology, 40, 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Pang, X. L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J. K., & Yu Ip, C. C. (2004). Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. Journal of Medical Virology, 72, 496–501.

    Article  CAS  PubMed  Google Scholar 

  • Parshionikar, S., Laseke, I., & Fout, G. S. (2010). Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Applied and Environmental Microbiology, 76, 4318–4326. doi:10.1128/AEM.02800-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., & Nascimento, M. S. (2012). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Review, 36(4), 786–814.

    Article  Google Scholar 

  • Sánchez, G., Elizaquível, P., & Aznar, R. (2012). Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR. Food and Environmental Virology, 4, 21–25.

    Article  PubMed  Google Scholar 

  • Sidhu, J. P. S., & Toze, S. G. (2009). Human pathogens and their indicators in biosolids: A literature review. Environment International, 35(1), 187–201.

    Article  PubMed  Google Scholar 

  • Topp, E., Scott, A., Lapen, D. R., Lyautey, E., & Duriez, P. (2009). Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: Some considerations. Bioresource Technology, 100(22), 5395–5398.

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann, U., Choi, I. S., & Dombrowski, E. M. (2007). Fundamentals of biological wastewater treatment (p. 355). Weinheim: Wiley.

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Spanish project RTA2014-0024-C04-01 of the Spanish Ministry of Economy and Innovation and the Brazilian CNPq Project number 472804/2013-8 of the CAPES/PNPD and CAPES/PDSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rodríguez-Lázaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fongaro, G., Hernández, M., García-González, M.C. et al. Propidium Monoazide Coupled with PCR Predicts Infectivity of Enteric Viruses in Swine Manure and Biofertilized Soil. Food Environ Virol 8, 79–85 (2016). https://doi.org/10.1007/s12560-015-9225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-015-9225-1

Keywords

Navigation