Skip to main content

Advertisement

Log in

Ultraviolet Light Inactivation of Murine Norovirus and Human Norovirus GII: PCR May Overestimate the Persistence of Noroviruses Even When Combined with Pre-PCR Treatments

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Transmission of gastroenteritis-causing noroviruses may be significant via contaminated surfaces. Measures for control, e.g. disinfection with ultraviolet irradiation (UV), are therefore necessary for interrupting this transmission. Human norovirus (HuNoV) GII.4 and Murine norovirus (MuNoV) were used to study the efficacy of UV for virus inactivation on dry glass surfaces. MuNoV inactivation was measured using viability assay and the reduction in viral RNA levels for both viruses using reverse transcription quantitative PCR (RT-QPCR). For each UV dose, two parallel sample groups were detected using RT-QPCR: one group was enzymatically pre-PCR treated with Pronase and RNAse enzymes, while the other was not treated enzymatically. In the viability assay, loss of infectivity and a 4-log reduction of MuNoV were observed when the viruses on glass slides were treated with a UV dose of 60 mJ/cm2 or higher. In the RT-QPCR assay, a steady 2-log decline of MuNoV and HuNoV RNA levels was observed when UV doses were raised from 0 to 150 mJ/cm2. A distinct difference in RNA levels of pretreated and non-pretreated samples was observed with UV doses of 450–1.8 × 103 mJ/cm2: the RNA levels of untreated samples remained over 1.0 × 103 PCR units (pcr-u), while the RNA levels of enzyme-treated samples declined below 100 pcr-u. However, the data show a prominent difference between the persistence of MuNoV observed with the infectivity assay and that of viral RNA detected using RT-QPCR. Methods based on genome detection may overestimate norovirus persistence even when samples are pretreated before genome detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Craford, S. E., Neill, F. H., et al. (2008). Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases, 14(10), 1553–1557.

    Article  PubMed  Google Scholar 

  • Cheesbrough, J. S., Barkess-Jones, L., & Brown, D. W. (1997). Possible prolonged environmental survival of small round structured viruses. Journal of Hospital Infection, 35, 325–326.

    Article  CAS  PubMed  Google Scholar 

  • Dancho, B., Chen, H., & Kingsley, D. H. (2012). Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. International Journal of Food Microbiology, 155, 222–226.

    Article  CAS  PubMed  Google Scholar 

  • de Roda Husman, A. M., Bijkerk, P., Lodder, W., van den Berg, H., Pribil, W., Cabaj, A., et al. (2004). Calicivirus inactivation by nonionizing (253.7-nanometer-wavelength [UV]) and ionizing (gamma) radiation. Applied and Environmental Microbiology, 70(9), 5089–5093.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diez-Valcarce, M., Kovač, K., Raspor, P., Rodríguez-Lázaro, D., & Hernández, M. (2011). Virus genome quantification does not predict norovirus infectivity after application of food inactivation processing technologies. Food and Environmental Virology, 3, 141–146.

    Article  CAS  Google Scholar 

  • D’Souza, D. H., & Su, X. (2010). Efficacy of chemical treatments against Murine norovirus, Feline calicivirus and MS2 bacteriophage. Foodborne Pathogens and Disease, 7(3), 319–326.

    Article  PubMed  Google Scholar 

  • Duizer, E., Bijkerk, P., Rockx, B., de Groot, A., Twisk, F., & Koopmans, M. (2004a). Inactivation of Caliciviruses. Applied and Environmental Microbiology, 70(8), 4538–4543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duizer, E., Schwab, K. J., Neill, F. H., Atmar, R. L., Koopmans, M. P. G., & Estes, M. K. (2004b). Laboratory efforts to cultivate noroviruses. Journal of Geneneral Virology, 85, 79–87.

    Article  CAS  Google Scholar 

  • Gallimore, C. I., Taylor, C., Gennery, A. R., Cant, A. J., Galloway, A., Iturriza-Gomara, M., et al. (2006). Environmental monitoring for gastroenteric viruses in a pediatric primary immunodeficiency unit. Journal of Clinical Microbiology, 44(2), 395–399.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hewitt, J., Rivera-Aban, M., & Greening, G. E. (2009). Evaluation of Murine norovirus as a surrogate for Human norovirus and Hepatitis A virus in heat inactivation studies. Journal of Applied Microbiology, 107, 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Hirneisen, K. A., & Kniel, K. E. (2013). Comparing Human norovirus surrogates: Murine Norovirus and Tulane Virus. Journal of Food Protection, 76(1), 139–143.

    Article  PubMed  Google Scholar 

  • Jean, J., Morales-Rayas, R., Anoman, M.-N., & Lamhoujeb, S. (2011). Inactivation of Hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiology, 28, 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Koopmans, M. (2008). Progress in understanding norovirus epidemiology. Current Opinion in Infectious Diseases, 21, 544–552.

    Article  PubMed  Google Scholar 

  • Koopmans, M., & Duizer, E. (2004). Foodborne viruses: an emerging problem. International Journal of Food Microbiology, 90, 23–41.

    Article  PubMed  Google Scholar 

  • Lamhoujeb, S., Fliss, I., Ngazoa, S. E., & Jean, J. (2008). Evaluation of the persistence of infectious Human noroviruses on food surfaces by using real-time nucleic acid sequence-based amplification. Applied and Environmental Virology, 74(11), 3349–3355.

    Article  CAS  Google Scholar 

  • Lee, J. E., Zoh, K. D., & Ko, G. P. (2008). Inactivation and UV disinfection of Murine norovirus with TiO2 under various environmental conditions. Applied and Environmental Microbiology, 74(7), 2111–2117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loisy, F., Atmar, R. L., Guillona, P., Le Canna, P., Pommepuya, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods, 123, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lopman, B. A., Reacher, M., van Duijnhoven, Y., Hanon, F., Brown, D., & Koopmans, M. (2003). Viral gastroenteritis outbreaks in Europe, 1995–2000. Emerging Infectious Diseases, 9(1), 90–96.

    Article  PubMed  Google Scholar 

  • Ludwig, A., Adams, O., Laws, H.-J., Schroten, H., & Tenenbaum, T. (2008). Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus. Journal of Medical Virology, 80, 1461–1467.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M., Painter, J., Woodruff, R., & Braden, C. (2006). Surveillance for foodborne-disease outbreaks—United States, 1998–2002. Surveillance Summaries, 55, 1–34.

    PubMed  Google Scholar 

  • Martin, E. T., Qin, X., Baden, H., Migita, R., & Zerr, D. M. (2011). Randomized double-blind crossover trial of ultraviolet light-sanitized keyboards in a pediatric hospital. American Journal of Infection Control, 39, 433–435.

    Article  PubMed  Google Scholar 

  • Meng, Q. S., & Gerba, C. B. (1996). Comparative inactivation of Enteric adenoviruses, Poliovirus, and coliphages by ultraviolet irradiation. Water Research, 30(1), 2665–2668.

    Article  CAS  Google Scholar 

  • Morales, H. (2006). TCID 50 protocol. Retrieved August 30, 2013 from http://www.urmc.rochester.edu/mbi/resources/Xenopus/protocols/TCID50-protocol.pdf.

  • Nowak, P., Topping, J. R., Fotheringham, V., Gallimore, C. I., Gray, J. J., Iturriza-Gómara, M., et al. (2011). Measurement of the virolysis of Human GII.4 norovirus in response to disinfectants and sanitisers. Journal of Virological Methods, 174, 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Nuanualsuwan, S., & Cliver, D. O. (2002). Pretreatment to avoid positive RT-PCR results with inactivated viruses. Journal of Virological Methods, 104, 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Nuanualsuwan, S., Mariam, T., Himathongkham, S., & Cliver, D. O. (2002). Ultraviolet inactivation of feline calicivirus, human enteric viruses and coliphages. Photochemistry and Photobiology, 76(4), 406–410.

    Google Scholar 

  • Nuanualsuwan, S., Thongtha, P., Kamolsiripichaiporn, S., & Subharat, S. (2008). UV inactivation and model of UV inactivation of foot-and-mouth disease viruses in suspension. International Journal of Food Microbiology, 127, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Park, G. W., Barclay, L., Macinga, D., Charbonneau, D., Pettigrew, C. A., & Vinjé, J. (2010). Comparative efficacy of seven hand sanitizers against Murine norovirus, Feline calicivirus, and GII.4 norovirus. Journal of Food Protection, 73(12), 2232–2238.

    CAS  PubMed  Google Scholar 

  • Park, G. W., Linden, K. G., & Sobsey, M. D. (2011). Inactivation of Murine norovirus, Feline calicivirus and Echovirus 12 as surrogates for Human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. Letters in Applied Microbiology, 52, 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Parshionikar, S., Laseke, I., & Fout, G. S. (2010). Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Applied and Environmental Microbiology, 76(13), 4318–4326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards, G. P. (2012). Critical review of norovirus surrogates in food safety research: Rationale for considering volunteer studies. Food and Environmental Virology, 4, 6–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Roche diagnostics, Pronase product description. Retrieved May 2, 2013 from https://cssportal.roche.com/LFR_PublicDocs/ras/10165921001_en_06.pdf.

  • Rönnqvist, M., Rättö, M., Tuominen, P., Salo, S., & Maunula, L. (2013). Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in food industry. Journal of Food Protection, 76(8), 1421–1428.

    Article  PubMed  Google Scholar 

  • Song, S. Q., Donelly, M., Schmelling, D., Messner, M., Linden, K. G., & Cotton, C. (2004). Ultraviolet light inactivation of protozoa in drinking water: A Bayesian meta-analysis. Water Research, 38, 317–326.

    Article  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B, 64(Part 4), 583–639.

    Article  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual, version 1.4. Cambridge: MRC Biostatistics Unit.

    Google Scholar 

  • Teunis, P. F. M., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., et al. (2008). Norwalk virus: How infectious is it? Journal of Medical Virology, 80, 1468–1476.

    Article  PubMed  Google Scholar 

  • Thornley, C. N., Emslie, N. A., Sprott, T. W., Greening, G. E., & Rapana, J. P. (2011). Recurring norovirus transmission on an airplane. Clinical Infectious Diseases, 53(6), 515–520.

    Article  PubMed  Google Scholar 

  • Tian, P., Yang, D., Quigley, C., Chou, M., & Xi, J. (2013). Inactivation of the Tulane virus, a novel surrogate for the Human norovirus. Journal of Food Protection, 76(4), 712–718.

    Article  CAS  PubMed  Google Scholar 

  • Topping, J. R., Schnerra, H., Hainesa, J., Scott, M., Carter, M. J., Willcocks, M. M., et al. (2009). Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with Human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction—A novel method for predicting virus infectivity. Journal of Virological Methods, 156, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Verhaelen, K., Bouwknegt, M., Lodder-Verschoor, F., Rutjes, S. A., & de Roda Husman, A. M. (2012). Persistence of Human norovirus GII.4 and GI.4, Murine norovirus, and Human adenovirus on soft berries as compared with PBS at commonly applied storage conditions. International Journal of Food Microbiology, 160, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Wobus, C., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot, G., et al. (2004). Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology, 2(12), 2076–2084.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the project ‘Detection and elimination of viruses from processing environments, 462002’ funded by Tekes (National Technology Agency of Finland) and several Finnish companies. We would like to thank Jukka Ranta, Ph.D., for his contribution in the writing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rönnqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rönnqvist, M., Mikkelä, A., Tuominen, P. et al. Ultraviolet Light Inactivation of Murine Norovirus and Human Norovirus GII: PCR May Overestimate the Persistence of Noroviruses Even When Combined with Pre-PCR Treatments. Food Environ Virol 6, 48–57 (2014). https://doi.org/10.1007/s12560-013-9128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-013-9128-y

Keywords

Navigation