GIV Noroviruses in Wastewaters and in Stool Specimens from Hospitalized Patients

Abstract

Noroviruses (NoVs) are important human pathogens associated with foodborne and waterborne gastroenteritis. These viruses are genetically highly heterogeneous, with more than forty genotypes within three genogroups (GI, GII, and GIV) identified in humans. However, the vast majority of human infections are associated with variants of a unique genotype, GII.4. Aside from these NoV strains of epidemiological relevance, NoV strains of genogroup GIV (Alphatron-like) are reported in a sporadic fashion and their overall prevalence in the community is unknown and this likely reflects the lack of specific diagnostic tools. We analyzed raw sewages collected from 32 wastewater treatment plants distributed throughout Italy (307 samples) and stool specimens collected from hospitalized patients with clinical signs of diarrhea of unknown etiology (285 samples). By using specific qualitative and quantitative RT-PCR assays, 21.8 % of the sewage samples and 3.2 % of the stool specimens tested positive for GIV NoVs. The number of genome copies in fecal samples ranged from 5.08 × 104 to 1.73× 106/g of feces. Sequence analysis showed limited genetic variability in human GIV viruses. The presence of GIV NoV both in sewage and in clinical samples confirms that not only GI and GII NoVs but also GIV strains are circulating in humans. Monitoring of GIV NoV is recommended in order to understand the dynamics of circulation in human populations, environmental contamination, and potential health risks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ajami, N., Koo, H., Darkoh, C., Atmar, R. L., Okhuysen, P. C., Jiang, Z. D., et al. (2010). Characterization of norovirus-associated traveler’s diarrhea. Clinical Infectious Diseases, 51, 123–130.

    PubMed  Article  CAS  Google Scholar 

  2. Bowers, R. M., & Dhar, A. K. (2011). Effect of template on generating a standard curve for absolute quantification of an RNA virus by real-time reverse transcriptase-polymerase chain reaction. Molecular and Cellular Probes, 25, 60–64.

    PubMed  Article  CAS  Google Scholar 

  3. Chan, M. C., Sung, J. J., Lam, R. K., Chan, P. K., Lee, N. L., Lai, R. W., et al. (2006). Fecal viral load and norovirus-associated gastroenteritis. Emerging Infectious Diseases, 12, 1278–1280.

    PubMed  Google Scholar 

  4. D’Agostino, M., Cook, N., Rodríguez-Lázaro, D., & Rutjes, S. (2011). Nucleic acid amplification-based methods for detection of enteric viruses: Definition of controls and interpretation of results. Food and Environmental Virology, 3, 55–60.

    Article  Google Scholar 

  5. Di Martino, B., Marsilio, F., Di Profio, F., Lorusso, E., Friedrich, K. G., Buonavoglia, C., et al. (2009). Detection of antibodies against genogroup GIV norovirus in carnivores. Clinical and Vaccine Immunology, 17(1), 180–182.

    PubMed  Article  Google Scholar 

  6. Diez-Valcarce, M., Cook, N., Hernández, M., & Rodríguez-Lázaro, D. (2011). Analytical application of a sample process control in detection of foodborne viruses. Food Analytical Methods, 4, 614–618.

    Article  Google Scholar 

  7. Eden, J. S., Lim, K. L., & White, P. A. (2012). Complete genome of the human norovirus GIV.1 strain lake Macquarie virus. Journal of Virology, 86, 10251–10252.

    PubMed  Article  CAS  Google Scholar 

  8. Fankhauser, R. L., Monroe, S. S., Noel, J. S., Humphrey, C. D., Bresee, J. S., Parashar, U. D., et al. (2002). Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. Journal of Infectious Diseases, 186, 1–7.

    PubMed  Article  Google Scholar 

  9. Glass, R. I., Parashar, U. D., & Estes, M. K. (2009). Norovirus gastroenteritis. New England Journal of Medicine, 361, 1776–1785.

    PubMed  Article  CAS  Google Scholar 

  10. Haramoto, E., Katayama, H., Oguma, K., Yamashita, H., Tajima, A., Nakajima, H., et al. (2006). Seasonal profiles of human noroviruses and indicator bacteria in a wastewater treatment plant in Tokyo, Japan. Water Science and Technology, 54, 301–308.

    PubMed  Article  CAS  Google Scholar 

  11. Iritani, N., Seto, Y., Kubo, H., Haruki, K., Ayata, M., & Ogura, H. (2002). Prevalence of “Norwalk-like virus” infections in outbreaks of acute nonbacterial gastroenteritis observed during the 1999–2000 season in Osaka City, Japan. Journal of Medical Virology, 66, 131–138.

    PubMed  Article  CAS  Google Scholar 

  12. Iwai, M., Hasegawa, S., Obara, M., Nakamura, K., Horimoto, E., Takizawa, T., et al. (2009). Continuous presence of noroviruses and sapoviruses in raw sewage reflects infections among inhabitants of Toyama, Japan (2006 to 2008). Applied and Environment Microbiology, 75, 1264–1270.

    Article  CAS  Google Scholar 

  13. Kitajima, M., Haramoto, E., Phanuwan, C., Katayama, H., & Ohgaki, S. (2009). Detection of genogroup IV norovirus in wastewater and river water in Japan. Letters in Applied Microbiology, 49, 655–658.

    PubMed  Article  CAS  Google Scholar 

  14. Kitajima, M., Oka, T., Haramoto, E., Phanuwan, C., Takeda, N., Katayama, K., et al. (2011). Genetic diversity of genogroup IV noroviruses in wastewater in Japan. Letters in Applied Microbiology, 52, 181–184.

    PubMed  Article  CAS  Google Scholar 

  15. Kitajima, M., Oka, T., Haramoto, E., Takeda, N., Katayama, K., & Katayama, H. (2010). Seasonal distribution and genetic diversity of genogroups I, II, and IV noroviruses in the Tamagawa River, Japan. Environmental Science and Technology, 44, 7116–7122.

    PubMed  Article  CAS  Google Scholar 

  16. Kremer, J. R., Langlet, J., Skraber, S., Weicherding, P., Weber, B., Cauchie, H. M., et al. (2011). Genetic diversity of noroviruses from outbreaks, sporadic cases and wastewater in Luxembourg 2008–2009. Clinical Microbiology & Infection, 17, 1173–1176.

    Article  CAS  Google Scholar 

  17. Kroneman, A., Harris, J., Vennema, H., Duizer, E., van Duynhoven, Y., Gray, J., et al. (2008a). Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. Journal of Public Health (Oxford), 30, 82–90.

    Article  CAS  Google Scholar 

  18. Kroneman, A., Verhoef, L., Harris, J., Vennema, H., Duizer, E., van Duynhoven, Y., et al. (2008b). Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the foodborne viruses in Europe Network from 1 July 2001 to 30 June 2006. Journal of Clinical Microbiology, 46, 2959–2965.

    PubMed  Article  CAS  Google Scholar 

  19. La Rosa, G., Fratini, M., Spuri-Vennarucci, V., Guercio, A., Purpari, G., & Muscillo, M. (2012). GIV Noroviruses and other enteric viruses in bivalves: A preliminary study. New Microbiologica, 35(1), 27–34.

    PubMed  Google Scholar 

  20. La Rosa, G., Iaconelli, M., Pourshaban, M., Fratini, M., & Muscillo, M. (2010a). Molecular detection and genetic diversity of norovirus genogroup IV: A yearlong monitoring of sewage throughout Italy. Archives of Virology, 155, 589–593.

    PubMed  Article  CAS  Google Scholar 

  21. La Rosa, G., Iaconelli, M., Pourshaban, M., & Muscillo, M. (2010b). Detection and molecular characterization of noroviruses from five sewage treatment plants in central Italy. Water Research, 44, 1777–1784.

    PubMed  Article  Google Scholar 

  22. La Rosa, G., Pourshaban, M., Iaconelli, M., & Muscillo, M. (2010c). Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Annali dell Istituto Superiore di Sanita, 46, 266–273.

    PubMed  Google Scholar 

  23. La Rosa, G., & Muscillo, M. (2013). Molecular detection of viruses in water and sewage. In N. Cook (Ed.), Viruses in food and water: Risks, surveillance and control (pp. 97–126). Woodhead Publishing Series in Food Science, Technology and Nutrition No. 249.

  24. La Rosa, G., Pourshaban, M., Iaconelli, M., & Muscillo, M. (2008). Detection of genogroup IV noroviruses in environmental and clinical samples and partial sequencing through rapid amplification of cDNA ends. Archives of Virology, 153, 2077–2083.

    PubMed  Article  Google Scholar 

  25. Lindell, A. T., Grillner, L., Svensson, L., & Wirgart, B. Z. (2005). Molecular epidemiology of norovirus infections in Stockholm, Sweden, during the years 2000 to 2003: Association of the GGIIb genetic cluster with infection in children. Journal of Clinical Microbiology, 43, 1086–1092.

    PubMed  Article  CAS  Google Scholar 

  26. Martella, V., Campolo, M., Lorusso, E., Cavicchio, P., Camero, M., Bellacicco, A. L., et al. (2007). Norovirus in captive lion cub (Panthera leo). Emerging Infectious Diseases, 13, 1071–1073.

    PubMed  Article  Google Scholar 

  27. Martella, V., Lorusso, E., Decaro, N., Elia, G., Radogna, A., D’Abramo, M., et al. (2008). Detection and molecular characterization of a canine norovirus. Emerging Infectious Diseases, 14, 1306–1308.

    PubMed  Article  Google Scholar 

  28. Matthews, J. E., Dickey, B. W., Miller, R. D., Felzer, J. R., Dawson, B. P., Lee, A. S., et al. (2012). The epidemiology of published norovirus outbreaks: A review of risk factors associated with attack rate and genogroup. Epidemiology and Infection, 140, 1161–1172.

    PubMed  Article  CAS  Google Scholar 

  29. Mesquita, J. R., Barclay, L., Nascimento, M. S., & Vinje, J. (2010). Novel norovirus in dogs with diarrhea. Emerging Infectious Diseases, 16, 980–982.

    PubMed  Article  Google Scholar 

  30. Nordgren, J., Matussek, A., Mattsson, A., Svensson, A., & Lindgren, P. (2008). Prevalence of norovirus and factors influencing virus concentrations during one-year in a fullscale wastewater treatment plant. Water Research, 43(4), 1117–1125.

    PubMed  Article  Google Scholar 

  31. Patel, M. M., Hall, A. J., Vinje, J., & Parashar, U. D. (2009). Noroviruses: A comprehensive review. Journal of Clinical Virology, 44, 1–8.

    PubMed  Article  CAS  Google Scholar 

  32. Pinto, P., Wang, Q., Chen, N., Dubovi, E. J., Daniels, J. B., Millward, L. M., et al. (2012). Discovery and genomic characterization of noroviruses from a gastroenteritis outbreak in domestic cats in the US. PLoS One, 7, e32739.

    PubMed  Article  CAS  Google Scholar 

  33. Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S., et al. (2012). Virus hazards from food and the environment. FEMS Microbiology Reviews, 36, 786–814.

    PubMed  Article  Google Scholar 

  34. Sinclair, R. G., Choi, C. Y., Riley, M. R., & Gerba, C. P. (2008). Pathogen surveillance through monitoring of sewer systems. Advances in Applied Microbiology, 65, 249–269.

    PubMed  Article  CAS  Google Scholar 

  35. Skraber, S., Langlet, J., Kremer, J. R., Mossong, J., De, L. S., Even, J., et al. (2011). Concentration and diversity of noroviruses detected in Luxembourg wastewaters in 2008–2009. Applied and Environment Microbiology, 77, 5566–5568.

    Article  CAS  Google Scholar 

  36. Teunis, P. F., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., et al. (2008). Norwalk virus: How infectious is it? Journal of Medical Virology, 80, 1468–1476.

    PubMed  Article  Google Scholar 

  37. Trujillo, A. A., McCaustland, K. A., Zheng, D. P., Hadley, L. A., Vaughn, G., Adams, S. M., et al. (2006). Use of TaqMan real-time reverse transcription-PCR for rapid detection, quantification, and typing of Norovirus. Journal of Clinical Microbiology, 44, 1405–1412.

    PubMed  Article  CAS  Google Scholar 

  38. Vinje, J., & Koopmans, M. P. (2000). Simultaneous detection and genotyping of “Norwalk-like viruses” by oligonucleotide array in a reverse line blot hybridization format. Journal of Clinical Microbiology, 38, 2595–2601.

    PubMed  CAS  Google Scholar 

  39. Zheng, D. P., Ando, T., Fankhauser, R. L., Beard, R. S., Glass, R. I., & Monroe, S. S. (2006). Norovirus classification and proposed strain nomenclature. Virology, 346, 312–323.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the joint Italian–American Project “Assessing the Impact of GIV Norovirus on Human Health: a Molecular Epidemiological Investigation on Environmental and Clinical Samples as a Basis for the Design of Novel Diagnostic Tools for an Emerging Pathogen,” and partially by the Grant “Calicivirus nei carnivori e nell’uomo: caratterizzazione molecolare, epidemiologia, implicazioni zoonosiche”—PRIN 2008. We thank Professor Herbert W. Virgin, Washington University (St. Louis, Missouri, United States) for providing the murine NoV stain used as sample process control. We gratefully acknowledge for wastewater sample collection: 1–2. E. Lorenzi, L. Meucci, M. Deceglie (SMAT Spa, Torino), E. Garrou, M. Morello, G. Mantovani (ARPA Piemonte, Torino); 3–4. G. Manassero (Arpa Valle d’Aosta), A. Martello (Corpo Forestale Valdostano); 5. W. Bodini, C. Amadasi (Vettabbia Spa, Milano); 6. L. Boscolo (Amiacque Spa, Milano); 7. M. Tomasoni, D. Monteverdi (A2A Spa, Brescia); 8–9. M. Poli, M. Dekas (Eco Center Spa AG, Bolzano), W. Strobl, E. Scarperi (APPA, Bolzano); 10–11. L. Bruni, G. Gatti, L.Tomasi, G. Cimadon (APPA,Trento); 12–13. P. Parati, E. Dell’Andrea, G. Gambillara (Arpa Veneto, Venezia); 14–15. S. Gaiter, L. Sola (ARPA Liguria, Genova); 16. F.Cornia, M.A. Corvaglia, P. Albertelli (ARPA Emilia Romagna, Bologna); 17. A. Gambaccioni, M. Razzolini (Publiacqua S.p.A. Firenze); 18. E. Renna, G. Saltalamacchia, M. Lucarini (ARPA Umbria, Perugia); 19–20. C. Mengarelli, Trimboli (ARPA Marche, Ancona); 21–24. C. Gala, R. Tomassini (Arpalazio, Roma), G. Ranalletta (ACEA ATO2 S.p.A., Roma); 25. E. Rufolo, R. Martino (ARPA Campania, Sezione provinciale di Napoli); 26–27. G. Assennato, G. Blonda, (Regione Puglia, Direzione Scientifica), V. Perrino, M. Mariani (ARPA Puglia, Bari); 28. R. Vita, R. Masotti, R. Martoccia (ARPA Basilicata, Potenza); 29. F. Pedulla, G. Belmusto (ARPA Calabria, Reggio Calabria); 30. L. Librici G. Abbate (ARPA Sicilia, Palermo); 31–32. M. G. Mulas, G. Campus (Regione Sardegna), A.M. Mereu, M. Secci (ARPA Sardegna, Cagliari).

Conflict of interest

There is no conflict of interest for all the authors. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the 1975 Helsinki Declaration, as revised in 2008. Informed consent was obtained from all patients included in the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuseppina La Rosa.

Additional information

M. Muscillo and M. Fratini have contributed equally to this study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muscillo, M., Fratini, M., Graffeo, R. et al. GIV Noroviruses in Wastewaters and in Stool Specimens from Hospitalized Patients. Food Environ Virol 5, 194–202 (2013). https://doi.org/10.1007/s12560-013-9121-5

Download citation

Keywords

  • Norovirus genogroup IV
  • Nested PCR
  • Real-time PCR
  • Sewage
  • Stool samples