Food and Environmental Virology

, Volume 4, Issue 3, pp 89–92 | Cite as

Potential Risk of Norovirus Infection Due to the Consumption of “Ready to Eat” Food

  • Serracca Laura
  • Rossini Irene
  • Battistini Roberta
  • Goria Maria
  • Sant Serena
  • De Montis Gabriella
  • Ercolini Carlo
Original Paper

Abstract

In this study, we investigated the presence of enteric viruses such as norovirus (NoV), hepatitis A virus (HAV), hepatitis E virus (HEV), and adenovirus (HAdV), in vegetables available on the Italian markets. For this aim, 110 national and international “ready to eat” samples were collected and analyzed by biomolecular tests and positive samples were confirmed by sequencing. All samples (100 %) were negative for HAV, HEV, and HAdV, while 13.6 % (15/110) were positive for NoV. Actually there is not a formal surveillance system for NoV infections in Italy but we clearly demonstrated a potential risk associated with the consumption of “ready to eat” vegetables. This study confirmed for the first time in Italy the presence of norovirus in semi-dried tomatoes by PCR technique.

Keywords

Ready to eat food Sun-dried tomatoes Norovirus PCR 

References

  1. Allard, A., Albisson, B., & Wadell, G. (2001). Rapid typing of human adenoviruses by a general PCR combined with restriction endo-nuclease analysis. Journal of Clinical Microbiology, doi: 10.1128/JCM.39.2.498-505.2001.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.PubMedGoogle Scholar
  3. Bidawid, S., Farber, J. M., Sattar, S. A., & Hayward, S. (2000). Heat inactivation of Hepatitis A virus in diary foods. Journal of Food Protection, 63(4), 522–528.PubMedGoogle Scholar
  4. Butot, S., Putallaz, T., Amoroso, R., & Sanchez, G. (2009). Inactivation of enteric viruses in minimally processed berries and herbs. Applied and Environmental Microbiology. doi:10.1128/AEM00182-09.
  5. Carter, M.J. (2005). Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection. Journal of Applied Microbiology, doi:10.1111/J.1365-2672.2005.02635x.
  6. Cheong, S., Lee, C., Song, S.W., Choi, W.C., Lee, C.H., & Kim, S.J. (2009). Enteric viruses in raw vegetables and groundwater used for irrigation in South Korea. Applied and Environmental Microbiology, doi:10.1128/AEM.01629-09.
  7. Craven, H., Duffy, L., Fegan, N., & Hillier, A. (2009). Semi dried tomatoes and hepatitis A virus. CSIRO Food and Nutritional Sciences, Victoria. http://www.foodstandards.gov.au/_srcfiles/P1012%20Hep%20A%20in%20semi-dried%20tomatoes%20Initial%20Cons%20SD1.pdf.
  8. Di Bartolo, I., Martelli, F., Inglese, N., Pourshaban, M., Caprioli, A., Ostanello, F., et al. (2008). Widespread diffusion of genotype 3 hepatitis E virus among farming swine in Northern Italy. Veterinary Microbiology, doi:10.1016/j.vetmic.2008.04.028.
  9. Doultree, J. C., Druce, J. D., Birch, C. J., Bowden, D. S., & Marshall, J. A. (1999). Inactivation of feline calicivirus, a Norwalk virus surrogate. Journal of Hospital Infection, 41(1), 51–57.PubMedCrossRefGoogle Scholar
  10. Erker, J. C., Desai, S. M., & Mushahwar, I. K. (1999). Rapid detection of Hepatitis E virus RNA by reverse transcription-polymerase chain reaction using universal oligonucleotide primers. Journal of Virological Methods, 81(1–2), 109–113.PubMedCrossRefGoogle Scholar
  11. European Food Safety Authorities. (2007). The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA Journal, 130.Google Scholar
  12. Fraisse, A., Temmam, S., Deboosere, N., Guillier, L., Delobel, A., & Maris, P. (2011). Comparison of chlorine and peroxyacetic-based disinfectant to inactivate Feline calicivirus, Murine norovirus and Hepatitis A virus on lettuce. International Journal of Food Microbiology, 151(1), 98–104.PubMedCrossRefGoogle Scholar
  13. Koopmans, M., & Duizer, E. (2004). Foodborne viruses: an emerging problem. International Journal of Food Microbiology, doi:10.1016/S0168-1605(03)00169-7.
  14. Kuo, H. W., Schmid, D., Jelovcan, S., Pilcher, A. M., Magnet, E., Reichart, S., et al. (2009). A foodborne outbreak due to Norovirus in Austria, 2007. Journal of Food Protection, 72(1), 193–196.PubMedGoogle Scholar
  15. Le Guyader, F., Dubois, E., Menare, D., & Pommepuy, M. (1994). Detection of hepatitis A virus, rotavirus and enterovirus in naturally contaminated shellfish and sediment by reverse transcription-heminetsed PCR. Applied and Environmental Microbiology, 60(10), 3665–3671.PubMedGoogle Scholar
  16. Maunula, L., Roivaunen, M., Keranen, M., Makela, S., Soderberg, K., Summa, M., et al. (2009). Detection of human Norovirus from frozen raspberries in a cluster of gastroenteritis outbreaks. European Surveillance, 49(14):ppi 19435.Google Scholar
  17. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food-related illness and death in the United states. Emerging Infectious Diseases, 5(5), 607–625.PubMedCrossRefGoogle Scholar
  18. Petrignani, M., Harms, M., Verhoef, L., Van Hunen, R., Swaan, C., Van Steenbergen, J., et al. (2010). Update: A food-borne outbreak of hepatitis A in the Netherlands related to semi-dried tomatoes in oil, January–February 2010. European Surveillance, 20(15):19572.Google Scholar
  19. Puig, M., Jofre, J., Lucena, F., Allard, A., Waddel, G., & Girones, G. (1994). Detection of adenoviruses and enteroviruses in polluted waters by nested-PCR amplification. Applied and Environmental Microbiology, 60(8), 2963–2970.PubMedGoogle Scholar
  20. Rzezutka, A., & Cook, N. (2004). Survival of human enteric viruses in the environment and food. FEMS Microbiology Reviews, 28(4), 441–453.PubMedCrossRefGoogle Scholar
  21. Serracca, L., Gallo, F., Rossini, I., Benedetto, A., Lacerenza, D., Callipo, M. R., et al. (2010). Official surveillance of Hepatitis A virus: description of an HAV detection method in shellfish. Food and Environmental Virology,. doi:10.1007/s12560-009-9015-8.Google Scholar
  22. Teunis, P. F., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., et al. (2008). Norwalk virus: how infectious is it? Journal of Medical Virology, 80(8), 1468–1476.PubMedCrossRefGoogle Scholar
  23. Vennema, H., De Bruin, E., & Koopmans, M. (2002). Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. Journal of Clinical Virology, 25(2), 233–235.PubMedCrossRefGoogle Scholar
  24. Vinjé, J., & Koopmans, M. (1996). Molecular detection and epidemiology of small round-structured viruses in a outbreaks of gastroenteritis in the Netherlands. The Journal of Infectious Diseases, 174(3), 610–615.PubMedCrossRefGoogle Scholar
  25. Wadl, M., Scherer, K., Nielsen, S., Diedrich, S., Ellerbroek, L., Frank, C., et al. (2010). Food-borne norovirus-outbreak at a military base, Germany, 2009. BMC Infectious Diseases,. doi:10.1186/1471-2334-10-30.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2012

Authors and Affiliations

  • Serracca Laura
    • 1
    • 3
  • Rossini Irene
    • 1
  • Battistini Roberta
    • 1
  • Goria Maria
    • 2
  • Sant Serena
    • 2
  • De Montis Gabriella
    • 1
  • Ercolini Carlo
    • 1
  1. 1.Marine Microbiology Laboratory of the Experimental Zooprophylactic Institute of Piemonte Liguria e Valle d’AostaLa SpeziaItaly
  2. 2.Molecular Microbiology and Genomic Analyses Laboratory of the Experimental Zooprophylactic Institute of Piemonte Liguria e Valle d’AostaTurinItaly
  3. 3.Laboratorio di Microbiologia Marina, Istituto Zooprofilattico SperimentaleSezione La SpeziaItaly

Personalised recommendations