Application of a Swab Sampling Method for the Detection of Norovirus and Rotavirus on Artificially Contaminated Food and Environmental Surfaces

  • K. Scherer
  • D. Mäde
  • L. Ellerbroek
  • J. Schulenburg
  • R. Johne
  • G. Klein
Original Paper

Abstract

Noroviruses and rotaviruses are the leading causes of non-bacterial gastroenteritis in humans worldwide. Virus-contaminated food and surfaces represent an important risk to public health. However, established detection methods for the viruses in food products are laborious and time-consuming. Here, we describe a detailed swabbing protocol combined with real-time RT-PCR for norovirus and rotavirus detection on artificially contaminated food and environmental surfaces. Recovery rates between 2 and 78% for norovirus and between 8 and 42% for rotavirus were determined for contaminated food surfaces of apple, pepper, cooked ham and salami. From contaminated environmental surfaces (stainless steel, ceramic plate, polyethylene, wood), recovery rates between 26 and 52% (norovirus) and between 10 and 58% (rotavirus) were determined. The results demonstrate the suitability of the swab sample method for virus detection on food and environmental surfaces. Compared to other methods, it is easy to perform and significantly time-saving, predestining it for routine testing.

Keywords

Norovirus Rotavirus Detection Food Environment Real-time PCR 

References

  1. Abad, F. X., Pintó, R. M., & Bosch, A. (1994). Survival of enteric viruses on environmental fomites. Applied Environmental Microbiology, 60, 3704–3710.Google Scholar
  2. Anderson, A. D., Garrett, V. D., Sobel, J., Monroe, S. S., Fankhauser, R. L., Schwab, K. J., et al. (2001). Outbreak Investigation Team. Multistate outbreak of Norwalk-like virus gastroenteritis associated with a common caterer. Applied Environmental Microbiology, 154, 1013–1019.Google Scholar
  3. Ansari, S. A., Springthorpe, V. S., & Sattar, S. A. (1991). Survival and vehicular spread of human rotaviruses: possible relation to seasonality of outbreaks. Reviews of Infectious Diseases, 13, 448–461.PubMedGoogle Scholar
  4. Baert, L., Uyttendaele, M., & Debevere, J. (2008). Evaluation of viral extraction methods on a broad range of ready-to-eat foods with conventional and real-time RT-PCR for Norovirus GII detection. International Journal of Food Microbiology, 123, 101–108.PubMedCrossRefGoogle Scholar
  5. Bidawid, S., Malik, N., Adegbunrin, O., Sattar, S. A., & Farber, J. M. (2004). Norovirus cross-contamination during food handling and interruption of virus transfer by hand antisepsis: Experiments with feline calicivirus as a surrogate. Journal of Food Protection, 67, 103–109.PubMedGoogle Scholar
  6. Bosch, A. (1998). Human enteric viruses in water environment: A mini review. International Microbiology, 1, 191–196.PubMedGoogle Scholar
  7. Boxman, I. L., Tilburg, J. J., te Loeke, N. A., Vennema, H., de Boer, E., & Koopmans, M. (2007). An efficient and rapid method for recovery of norovirus from food associated with outbreaks of gastroenteritis. Journal of Food Protection, 70, 504–508.PubMedGoogle Scholar
  8. Bresee, J. S., Widdowson, M. A., Monroe, S. S., & Glass, R. I. (2002). Foodborne viral gastroenteritis: Challenges and opportunities. Clinical Infectious Diseases, 35, 748–753.PubMedCrossRefGoogle Scholar
  9. Brown, G. S., Betty, R. G., Brockmann, J. E., Lucero, D. A., Souza, C. A., Walsh, K. S., et al. (2007). Evaluation of rayon swab surface sample collection method for Bacillus spores from nonporous surfaces. Journal of Applied Microbiology, 103, 1074–1080.PubMedGoogle Scholar
  10. Butot, S., Putallaz, T., Croquet, C., Lamothe, G., Meyer, R., Joosten, H., et al. (2007a). Attachment of enteric viruses to bottles. Applied Environmental Microbiology, 73, 5104–5110.CrossRefGoogle Scholar
  11. Butot, S., Putallaz, T., & Sánchez, G. (2007b). Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Applied Environmental Microbiology, 73, 186–192.CrossRefGoogle Scholar
  12. Buttner, M. P., Cruz, P., Stetzenbach, L. D., & Cronin, T. (2007). Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR. Applied Environmental Microbiology, 73, 3505–3510.CrossRefGoogle Scholar
  13. Butz, A. M., Fosarelli, P., Dick, J., Cusack, T., & Yolken, R. (1993). Prevalence of rotavirus on high-risk fomites in day-care facilities. Pediatrics, 92, 202–205.PubMedGoogle Scholar
  14. Caul, E. O. (1996). Viral gastroenteritis: Small round structured viruses, caliciviruses and astroviruses. Part I. The clinical and diagnostic perspective. Journal of Clinical Pathology, 49, 874–880.PubMedCrossRefGoogle Scholar
  15. Cheesbrough, J. S., Barkess-Jones, L., & Brown, D. W. (1997). Possible prolonged environmental survival of small round structured viruses. Journal of Hospital Infection, 35, 325–326.PubMedCrossRefGoogle Scholar
  16. Daniels, N. A., Bergmire-Sweat, D. A., Schwab, K. J., Hendricks, K. A., Reddy, S., Rowe, S. M., et al. (2000). A foodborne outbreak of gastroenteritis associated with Norwalk-like viruses: First molecular traceback to deli sandwiches contaminated during preparation. Journal of Infectious Diseases, 181, 1467–1470.PubMedCrossRefGoogle Scholar
  17. Dowd, S. E., Pillai, S. D., Wang, S., & Corapcioglu, M. Y. (1998). Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Applied Environmental Microbiology, 64, 405–410.Google Scholar
  18. Dubois, E., Agier, C., Traoré, O., Hennechart, C., Merle, G., Crucière, C., et al. (2002). Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. Journal of Food Protection, 65, 1962–1969.PubMedGoogle Scholar
  19. Dubois, E., Hennechart, C., Merle, G., Burger, C., Hmila, N., Ruelle, S., et al. (2007). Detection and quantification by real-time RT-PCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: Characterization of the method performances. International Journal of Food Microbiology, 117, 141–149.PubMedCrossRefGoogle Scholar
  20. Elschner, M., Schrader, C., Hotzel, H., Prudlo, J., Sachse, K., Eichhorn, W., et al. (2005). Isolation and molecular characterization of equine rotavirus from Germany. Veterinary Microbiology, 105, 123–129.PubMedCrossRefGoogle Scholar
  21. Favero, M. S., McDade, J. J., Robertsen, J. A., Hoffman, R. K., & Edwards, R. W. (1968). Microbiological sampling of surfaces. Journal of Applied Bacteriology, 3, 336–343.Google Scholar
  22. Gallimore, C. I., Pipkin, C., Shrimpton, H., Green, A. D., Pickford, Y., McCartney, C., et al. (2005). Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: An indication of the source of contamination. Epidemiology and Infection, 133, 41–47.PubMedCrossRefGoogle Scholar
  23. Grant, S. B., List, E. J., & Lidstrom, M. E. (1993). Kinetic analysis of virus adsorption and inactivation in batch experiments. Water Resources Research, 29, 2067–2085.CrossRefGoogle Scholar
  24. Hedlund, K. O., Rubilar-Abreu, E., & Svensson, L. (2000). Epidemiology of calicivirus infections in Sweden, 1994–1998. Journal of Infectious Diseases, 181, 275–280.CrossRefGoogle Scholar
  25. Höhne, M., & Schreier, E. (2004). Detection and characterization of norovirus outbreaks in Germany: Application of a one-tube RT-PCR using a fluorogenic real-time detection system. Journal of Medical Virology, 72, 312–319.PubMedCrossRefGoogle Scholar
  26. Jansen, A., Stark, K., Kunkel, J., Schreier, E., Ignatius, R., Liesenfeld, O., et al. (2008). Aetiology of community-acquired, acute gastroenteritis in hospitalised adults: A prospective cohort study. BMC Infectious Disease, 8, 143–150.CrossRefGoogle Scholar
  27. Keswick, B. H., Pickering, L. K., DuPont, H. L., & Woodward, W. E. (1983). Survival and detection of rotaviruses on environmental surfaces in day care centers. Applied Environmental Microbiology, 46, 813–816.Google Scholar
  28. Koopmans, M. (2008). Progress in understanding norovirus epidemiology. Current Opinion in Infectious Diseases, 21, 544–552.PubMedCrossRefGoogle Scholar
  29. Koopmans, M., & Duizer, E. (2004). Foodborne viruses: An emerging problem. International Journal of Food Microbiology, 90, 23–41.PubMedCrossRefGoogle Scholar
  30. Le Guyader, F. S., Schultz, A. C., Haugarreau, L., Croci, L., Maunula, L., Duizer, E., et al. (2004). Round-robin comparison of methods for the detection of human enteric viruses in lettuce. Journal of Food Protection, 67, 2315–2319.PubMedGoogle Scholar
  31. Liu, B., Maywood, P., Gupta, L., & Campbell, B. (2003). An outbreak of Norwalk-like virus gastroenteritis in an aged-care residential hostel. NSW Public Health Bulletin, 14, 105–109.PubMedCrossRefGoogle Scholar
  32. Lopman, B. A., Reacher, M. H., Van Duijnhoven, Y., Hanon, F. X., Brown, D., & Koopmans, M. (2003). Viral gastroenteritis outbreaks in Europe, 1995–2000. Emerging Infectious Diseases, 9, 90–96.PubMedGoogle Scholar
  33. Lopman, B., van Duynhoven, Y., Hanon, F. X., Reacher, M., Koopmans, M., Brown, D., et al. (2002). Laboratory capability in Europe for foodborne viruses. EuroSurveillance, 7, 61–65.PubMedGoogle Scholar
  34. Mäde, D., Kahle, S., & Trübner, K. (2005). Detection of norovirus in food and environmental samples by RT-PCR. Application in routine diagnostics. Archiv für Lebensmittelhygiene, 56, 1–24.Google Scholar
  35. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.PubMedGoogle Scholar
  36. Moore, G., & Griffith, C. (2007). Problems associated with traditional hygiene swabbing: The need for in-house standardization. Journal of Applied Microbiology, 103, 1090–1103.PubMedCrossRefGoogle Scholar
  37. Pang, X. L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J. K., & Yu Ip, C. C. (2004). Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. Journal of Medical Virology, 72, 496–501.PubMedCrossRefGoogle Scholar
  38. Park, Y., Cho, Y. H., Jee, Y., & Ko, G. (2008). Immunomagnetic separation combined with real-time reverse transcriptase PCR assays for detection of norovirus in contaminated food. Applied and Environmental Microbiology, 74, 4226–4230.PubMedCrossRefGoogle Scholar
  39. Redman, J. A., Grant, S. B., Olson, T. M., Hardy, M. E., & Estes, M. K. (1997). Filtration of recombinant Norwalk virus particles and bacteriophages MS2 in quartz sand: Importance of electrostatic interactions. Environmental Science and Technology, 31, 3378–3383.CrossRefGoogle Scholar
  40. Richards, G. P., Watson, M. A., Fankhauser, R. L., & Monroe, S. S. (2004). Genogroup I and II noroviruses detected in stool samples by real-time reverse transcription-PCR using highly degenerate universal primers. Applied Environmental Microbiology, 70, 7179–7184.CrossRefGoogle Scholar
  41. Rose, L., Jensen, B., Peterson, A., Banerjee, S. N., & Srduino, M. J. (2004). Swab materials and Bacillus anthracis spore recovery from nonporous surfaces. Emerging Infectious Diseases, 10, 1023–1029.PubMedGoogle Scholar
  42. Rutjes, S. A., Lodder-Verschoor, F., van der Poel, W. H., van Duijnhoven, Y. T., & de Roda Husman, A. M. (2006). Detection of noroviruses in foods: A study on virus extraction procedures in foods implicated in outbreaks of human gastroenteritis. Journal of Food Protection, 69, 1949–1956.PubMedGoogle Scholar
  43. Rzezutka, A., D’Agostino, M., & Cook, N. (2006). An ultracentrifugation-based approach to the detection of hepatitis A virus in soft fruits. International Journal of Food Microbiology, 108, 315–320.PubMedGoogle Scholar
  44. Said, M. A., Perl, T. M., & Sears, C. L. (2008). Healthcare epidemiology: Gastrointestinal flu: Norovirus in health care and long-term care facilities. Clinical Infectious Disease, 47, 1202–1208.CrossRefGoogle Scholar
  45. Sair, A. I., D’Souza, D. H., Moe, C. L., & Jaykus, L. A. (2002). Improved detection of human enteric viruses in foods by RT-PCR. Journal of Virology Methods, 100, 57–69.CrossRefGoogle Scholar
  46. Sattar, S. A., Springthorpe, V. S., & Tetro, J. A. (2001). Rotavirus. In Y. H. Hui, S. A. Sattar, K. D. Murrell, W.-K. Nip, & P. S. Stanfield (Eds.), Foodborne disease handbook: Viruses, parasites, and HACCP (pp. 99–126). New York: Marcel Dekker.Google Scholar
  47. Seymour, I. J., & Appleton, H. (2001). Foodborne viruses and fresh produce. Journal of Applied Microbiology, 91, 759–773.PubMedCrossRefGoogle Scholar
  48. Straub, T. M., Höner zu Bentrup, K., Orosz-Coghlan, P., Dohnalkova, A., Mayer, B. K., Bartholomew, R. A., et al. (2007). In vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Disease, 13, 396–403.Google Scholar
  49. Svensson, L. (2000). Diagnosis of foodborne viral infections in patients. International Journal of Food Microbiology, 59, 117–126.PubMedCrossRefGoogle Scholar
  50. van Zyl, W. B., Page, N. A., Grabow, W. O., Steele, A. D., & Taylor, M. B. (2006). Molecular epidemiology of group A rotaviruses in water sources and selected raw vegetables in southern Africa. Applied Environmental Microbiology, 72, 4554–4560.CrossRefGoogle Scholar
  51. Vega, E., Garland, J., & Pillai, S. D. (2008). Electrostatic forces control nonspecific virus attachment to lettuce. Journal of Food Protection, 71, 522–529.PubMedGoogle Scholar
  52. Vega, E., Smith, J., Garland, J., Matos, A., & Pillaii, S. D. (2005). Variability of virus attachment patterns to butterhead lettuce. Journal of Food Protection, 68, 2112–2117.PubMedGoogle Scholar
  53. Ward, R. L., Bernstein, D. I., Young, E. C., Sherwood, J. R., Knowlton, D. R., & Schiff, G. M. (1986). Human rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. Journal of Infectious Diseases, 154, 871–880.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • K. Scherer
    • 1
  • D. Mäde
    • 2
  • L. Ellerbroek
    • 3
  • J. Schulenburg
    • 4
  • R. Johne
    • 3
  • G. Klein
    • 1
  1. 1.Institute of Food Quality and Food SafetyUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.State Laboratory for Consumer Protection, Saxony-AnhaltHalleGermany
  3. 3.Federal Institute for Risk Assessment, BerlinBerlinGermany
  4. 4.Central Institute of the Bundeswehr Medical ServiceKielGermany

Personalised recommendations