A Collaborative-Filtering-Based Data Collection Strategy for Friedreich’s Ataxia

  • Wenbin Yue
  • Zidong WangEmail author
  • Bo Tian
  • Annette Payne
  • Xiaohui Liu


Friedreich’s ataxia (FRDA) is an inherited neurodegenerative disorder with the prevalence of 2–4 in every 100,000 Caucasian population. Since 2010, the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) has endeavored to define and characterize FRDA by recruiting over 940 FRDA patients to provide baseline data in 19 study sites distributed in 9 European countries. It is challenging to collect primary data at EFACTS’ study sites because of physical/psychological difficulties in recruiting new patients and collecting follow-up assessment data. To overcome such challenges, in this paper, we propose a novel data collection strategy for the FRDA baseline data by using the collaborative filtering (CF) approaches. This strategy is motivated by the popularity of the nowadays “Recommendation System” whose central idea is based on the fact that similar patients have similar symptoms on each test item. By doing so, instead of having no data at all, the FRDA researchers would be provided with certain predicted baseline data on patients who cannot attend the assessments for physical/psychological reasons, thereby helping with the data analysis from the researchers’ perspective. It is shown that the CF approaches are capable of predicting baseline data based on the similarity in test items of the patients, where the prediction accuracy is evaluated based on three rating scales selected from the EFACTS database. Experimental results demonstrate the validity and efficiency of the proposed strategy.


Recommendation system Collaborative filtering Friedreich’s ataxia Data mining Data collection 


Funding Information

This work was supported in part by the Seventh Framework Programme of the European Union under Grant No. 242193 (EFACTS), the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brerse JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the fourteenth conference on uncertainty in artificial intelligence. Madison; 1998. p. 43–52.Google Scholar
  2. 2.
    Bu Z, Cao J, Li H, Gao G, Tao H. GLEAM: a graph clustering framework based on potential game optimization for large-scale social networks. Knowl Inf Syst 2018;55(3):741–70.CrossRefGoogle Scholar
  3. 3.
    Bu Z, Gao G, Li H-J, Cao J. CAMAS: a cluster-aware multiagent system for attributed graph clustering. Inf Fus 2017;37:10–21.CrossRefGoogle Scholar
  4. 4.
    Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271(5254):1423–27.CrossRefGoogle Scholar
  5. 5.
    Cao J, Bu Z, Gao G, Tao H. Weighted modularity optimization for crisp and fuzzy community detection in large-scale networks. Physica A: Stat Mech Appl 2016;462:386–95.CrossRefGoogle Scholar
  6. 6.
    Cao J, Wu Z, Mao B, Zhang Y. Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system. World Wide Web J: Internet Web Inf Syst 2013;16(5–6):729–48.CrossRefGoogle Scholar
  7. 7.
    Chen Y, Wang Z, Fei S, Han Q-L. Regional stabilization for discrete time-delay systems with actuator saturations via a delay-dependent polytopic approach. IEEE Trans Autom Control 2019;64(3):1257–64.CrossRefGoogle Scholar
  8. 8.
    Chen Y, Wang Z, Shen B, Dong H. Exponential synchronization for delayed dynamical networks via intermittent control: dealing with actuator saturations. IEEE Trans Neural Netw Learn Syst 2019;30(4):1000–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Y, Wang Z, Yuan Y, Date P. in press. Distributed \(H_{\infty }\) filtering for switched stochastic delayed systems over sensor networks with fading measurements. IEEE Transactions on Cybernetics. in press.
  10. 10.
    Deshpande M, Karypis G. Item-based top-n recommendation algorithms. ACM Trans Inf Syst 2004;22(1): 143–77.CrossRefGoogle Scholar
  11. 11.
    Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 2007;6(10):878–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Ding D, Wang Z, Han Q-L, Wei G. Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans Cybern 2019;49(6):2372–84.CrossRefPubMedGoogle Scholar
  13. 13.
    Ding D, Wang Z, Han Q-L, Wei G. Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans Syst Man Cybern-Syst 2018;48(5):779–89.CrossRefGoogle Scholar
  14. 14.
    Friedreich N. Ueber degenerative Atrophie der spinalen Hinterstränge. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 1863;26(3–4):391–419.Google Scholar
  15. 15.
    Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981;104(3):589–620.CrossRefGoogle Scholar
  16. 16.
    Herlocker JL. Understanding and improving automated collaborative filtering systems. PhD thesis: University of Minnesota; 2000.Google Scholar
  17. 17.
    Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. Berkeley; 1999. p. 230–237.Google Scholar
  18. 18.
    Liu S, Wang Z, Wei G, Li M. in press. Distributed set-membership filtering for multi-rate systems under the round-robin scheduling over sensor networks. IEEE Transactions on Cybernetics. in press.
  19. 19.
    Lynch DR, Kichula E. Challenges ahead for trials in Friedreich’s ataxia. Lancet Neurol 2016;15(13):1300–1.CrossRefPubMedGoogle Scholar
  20. 20.
    Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 2010;67(8):941–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord 2012;27(8):1026–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Ma L, Wang Z, Han Q-L, Liu Y. Consensus control of stochastic multi-agent systems: a survey. Sci China Inf Sci 2017;60:12.Google Scholar
  23. 23.
    Ma L, Wang Z, Cai C, Alsaadi FE. in press. Dynamic event-triggered state estimation for discrete-time singularly perturbed systems with distributed time-delays. IEEE Transactions on Systems, Man, and Cybernetics - Systems. in press.
  24. 24.
    Ma L, Wang Z, Han Q-L, Liu Y. Dissipative control for nonlinear Markovian jump systems with actuator failures and mixed time-delays. Automatica 2018;98:358–62.CrossRefGoogle Scholar
  25. 25.
    Ma L, Wang Z, Han Q-L, Lam HK. Envelope-constrained \(H_{\infty }\) filtering for nonlinear systems with quantization effects: the finite horizon case. Automatica 2018;93:527–34.CrossRefGoogle Scholar
  26. 26.
    Mondal A, Cambria E, Das D, Hussain A, Bandyopadhyay S. Relation extraction of medical concepts using categorization and sentiment analysis. Cogn Comput 2018;10(4):670–85.CrossRefGoogle Scholar
  27. 27.
    Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol 2015;14(2):174–82.CrossRefGoogle Scholar
  28. 28.
    Reetz K, Dogan I, Hilgers R-D, et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol 2016;15(13):1346–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Ricci F, Rokach L, Shapira B. Recommender systems: introduction and challenges. Recommender systems handbook. Boston: Springer; 2015. p. 1–34.Google Scholar
  30. 30.
    Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web. Hong Kong; 2001. p. 285–95.Google Scholar
  31. 31.
    Schmitz-Hübsch T, Montcel STD, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66(11):1717–20.CrossRefGoogle Scholar
  32. 32.
    Seyer L, Greeley N, Foerster D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand 2015;132(1):7–15.CrossRefPubMedGoogle Scholar
  33. 33.
    Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput 2019;11(2):227–40.CrossRefGoogle Scholar
  34. 34.
    Takács G, Gábor I, Németh B, Tikk D. Major components of the gravity recommendation system. ACM SIGKDD Explorations Newsletter 2007;9(2):80–3.CrossRefGoogle Scholar
  35. 35.
    Thanh ND, Ali M, Son LH. A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cogn Comput 2017;9(4):526–44.CrossRefGoogle Scholar
  36. 36.
    Wan X, Wang Z, Han Q-L, Wu M. in press. A recursive approach to quantized \(H_{\infty }\) state estimation for genetic regulatory networks under stochastic communication protocols. IEEE Transactions on Neural Networks and Learning Systems. in press.
  37. 37.
    Wan X, Wang Z, Wu M, Liu X. \(H_{\infty }\) state estimation for discrete-time nonlinear singularly perturbed complex networks under the Round-Robin protocol. IEEE Trans Neural Netw Learn Syst 2019;30(2):415–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Wan X, Wang Z, Han Q-L, Wu M. Finite-time \(H_{\infty }\) state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols. IEEE Trans Circ Syst-Part I 2018;65(10):3481–91.Google Scholar
  39. 39.
    Wan X, Wang Z, Wu M, Liu X. State estimation for discrete time-delayed genetic regulatory networks with stochastic noises under the round-robin protocols. IEEE Trans NanoBioscience 2018;17(2):145–54.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang L, Wang Z, Wei G, Alsaadi FE. Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol. IEEE Trans Neural Netw Learn Syst 2018;29(4):1046–57.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang L, Wang Z, Han Q-L, Wei G. Event-based variance-constrained \(H_{\infty }\) filtering for stochastic parameter systems over sensor networks with successive missing measurements. IEEE Trans Cybern 2018;48(3):1007–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang L, Wang Z, Wei G, Alsaadi FE. in press. Observer-based consensus control for discrete-time multi-agent systems with coding-decoding communication protocol. IEEE Transactions on Cybernetics. in press.
  43. 43.
    Wang L, Wang Z, Han Q-L, Wei G. Synchronization control for a class of discrete-time dynamical networks with packet dropouts: a coding-decoding-based approach. IEEE Trans Cybern 2018;48(8):2437–48.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang L, Chen X, Guan N-N, Liu H, Li J-Q. A hybrid interpolation weighted collaborative filtering method for anti-cancer drug response prediction. Frontiers in Pharmacology.
  45. 45.
    Zhao Z, Wang Z, Zou L, Guo G. in press. Finite-time state estimation for delayed neural networks with redundant delayed channels. IEEE Transactions on Systems, Man, and Cybernetics - Systems. in press.
  46. 46.
    Zheng Z, Ma H, Lyu MR, King I. Collaborative web service QoS prediction via neighborhood integrated matrix factorization. IEEE Trans Serv Comput 2013;6(3):289–99.CrossRefGoogle Scholar
  47. 47.
    Zheng Z, Ma H, Lyu MR, King I. Qos-aware web service recommendation by collaborative filtering. IEEE Trans Serv Comput 2011;4(2):140–52.CrossRefGoogle Scholar
  48. 48.
    Zou L, Wang Z, Han Q-L, Zhou DH. Recursive filtering for time-varying systems with random access protocol. IEEE Trans Autom Control 2018;64(2):720–7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceBrunel University LondonUxbridgeUK
  2. 2.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina

Personalised recommendations