Cognitive Computation

, Volume 10, Issue 4, pp 610–624 | Cite as

On Intuitionistic Fuzzy Copula Aggregation Operators in Multiple- Attribute Decision Making

  • Zhifu Tao
  • Bing Han
  • Huayou Chen


Operations of intuitionistic fuzzy values have been widely studied and have attracted significant interest. In this paper, some other operations on intuitionistic fuzzy values on the basis of Archimedean copulas and corresponding co-copulas are introduced. Such novel operations can show the relevance between intuitionistic fuzzy values. A family of weighted aggregation operators are developed according to the proposed operations, i.e., the intuitionistic fuzzy copula aggregation operator. The properties of the novel operations and the weighted aggregation operators are also considered. In the end, we provide a modified maximizing deviation decision procedure for multiple attributes decision making under intuitionistic fuzzy environment, and show a case study to illustrate the application of the proposed approach.


Multiple attribute decision making Atanassov’s intuitionistic fuzzy information Copula Modified maximizing deviation Intuitionistic fuzzy copula aggregation operator 



The authors first want to thank the Editor-in-Chief Professor Amir Hussain, the associate Editor and four anonymous referees for their constructive and valuable comments, which have much improved the paper.

Funding Information

The work was supported by National Natural Science Foundation of China (Nos. 71771001, 71701001, 71301001, 71371011, 71501002), the Anhui Provincial Philosophy and Social Science Planning Youth Foundation (No. AHSKQ2016D13), the Doctoral Scientific Research Foundation of Anhui University, the Provincial Natural Science Research Project of Anhui Colleges (No. KJ2015A379), and the Scientific Research Foundation of Hebei Education Department (QN2017060).

Compliance with Ethical Standards

This manuscript has not been published in whole or in part elsewhere, which has also not currently being considered for publication in another journal. All authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Atanassov KT, Gargov G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989;31:343–349.CrossRefGoogle Scholar
  2. 2.
    Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;80:87–96.CrossRefGoogle Scholar
  3. 3.
    Atanassov KT. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994;61:137–142.CrossRefGoogle Scholar
  4. 4.
    Bacigál T, Mesiar R, Najjari V. Generators of copulas and aggregation. Inf Sci. 2015;306:81–87.CrossRefGoogle Scholar
  5. 5.
    Bal H, Najjari V. Archimedean copulas family via hyperbolic generator. Gazi Uni J Sci. 2013;26:195–200.Google Scholar
  6. 6.
    Baets BD, Meyer HD, Kalická J, Mesiar R. On the relationship between modular functions and copulas. Fuzzy Sets Syst. 2015;268:110–126.CrossRefGoogle Scholar
  7. 7.
    Beliakov G, Bustince H, Goswami DP, Mukherjee UK, Pal NR. On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf Sci. 2011;181:1116–1124.CrossRefGoogle Scholar
  8. 8.
    Beliakov G, Pradera A, Calvo T. Aggregation functions: a guide for practitioners. In: Kacprzyk, editors. Studies in fuzziness and soft computing. Berlin: Springer; 2007.Google Scholar
  9. 9.
    Boran FE, Genc S, Kurt M, Akay D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst Appl. 2009;36:11363–11368.CrossRefGoogle Scholar
  10. 10.
    Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 1996;78:305–316.CrossRefGoogle Scholar
  11. 11.
    Chen SM, Cheng SH, Chiou CH. Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inform Fusion. 2016;27:215–227.CrossRefGoogle Scholar
  12. 12.
    Chen SM, Tan JM. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 1994;67:163–172.CrossRefGoogle Scholar
  13. 13.
    Chen ZP, Yang W. A new multiple criteria decision making method based on intuitionistic fuzzy information. Expert Syst Appl. 2012;39:4328–4334.CrossRefGoogle Scholar
  14. 14.
    Cherubini U, Luciano E. 2001. Value-at-risk trade-off and capital allocation with copulas, Department of Stastistics and Applied Mathematics Polyhedron Computational Finance and Unversity of Turin.Google Scholar
  15. 15.
    Cherubini U, Luciano E, Vecchiato W. Copula methods in finance. Wiley, Ltd, 1. 2004; edition, pp. 75–78.Google Scholar
  16. 16.
    Cornelis C, Deschrijver G, Kerre EE. Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets Syst. 2006;157:622–627.CrossRefGoogle Scholar
  17. 17.
    Deschrijver G, Kerre E. A generalization of operators on intuitionistic fuzzy sets using triangular norms and conorms. Notes IFS. 2002;8(1):19–27.Google Scholar
  18. 18.
    Fréchet M. Sur les tableaux de corrélation dont les marges sont données. Compt Rendus Hebdomadaires Des Seances De Lacademie Des Sci. 1956;242(20):2426–2428.Google Scholar
  19. 19.
    Genest C, Mackay RJ. Copulas Archimediennes et familles de lois bidimensionnelles dont les marges sont données. Can J Statis. 1986;14:145–159.CrossRefGoogle Scholar
  20. 20.
    He YD, Chen HY, Zhou LG, Liu JP, Tao ZF. Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Inf Sci. 2014;259:142–159.CrossRefGoogle Scholar
  21. 21.
    Hoeffding W. Masstabinvariante Korrelationstheorie. Schriften des Mathematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat Berlin 1940;5(3):179–233. (Reprinted as “Scale-invariant correlation theory” in Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 57-107. Springer, New York, NY, 1994).Google Scholar
  22. 22.
    Hong DH, Choi CH. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 2000;114:103–113.CrossRefGoogle Scholar
  23. 23.
    Lei Q, Xu ZS, Bustince H, Fernandez J. Intuitionistic fuzzy integrals based on Archimedean t-conorms and t-norms. Inf Sci. 2016;327:57–70.CrossRefGoogle Scholar
  24. 24.
    Li DF. Decision and game theory in management with intuitionistic fuzzy sets. Berlin: Springer; 2014.CrossRefGoogle Scholar
  25. 25.
    Li DF. Multiattribute decision making models and methods using intuitionistic fuzzy sets. J Comput Syst Sci. 2005;70:73–85.CrossRefGoogle Scholar
  26. 26.
    Liu HW, Wang GJ. Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Euro J Oper Res. 2007;179(1):220–233.CrossRefGoogle Scholar
  27. 27.
    Liebscher E. Construction of asymmetric multivariate copulas. J Multivariate Anal. 2008;99:2234–2250.CrossRefGoogle Scholar
  28. 28.
    Liu PD, Li HG. Interval-valued intuitionistic fuzzy power Bonferroni aggregation operators and their application to group decision making. Cogn. Comput. 2017,
  29. 29.
    Liu PD, Tang GL. Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic variables and Choquet integral. Cogn Comput. 2016;8(6):1036–1056.CrossRefGoogle Scholar
  30. 30.
    Ouyang Y, Pedrycz W. A new model for intuitionistic fuzzy multi-attributes decision making. Euro J Oper Res. 2016;249:677–682.CrossRefGoogle Scholar
  31. 31.
    Mayor G, Sunñer J, Torrens J. Copula-like operations on finite settings. IEEE Trans Fuzzy Syst. 2005; 13(4):468–477.CrossRefGoogle Scholar
  32. 32.
    Meng FY, Wang C, Chen XH. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2016;8:52–68.CrossRefGoogle Scholar
  33. 33.
    Nelsen RB. 2013. An introduction to copula. Springer Science & Business Media.Google Scholar
  34. 34.
    Parvathi R, Malathi C, Akram M, Atanassov KT. Intuitionistic fuzzy linear regression analysis. Fuzzy Optim Decis Ma. 2013;12:215–229.CrossRefGoogle Scholar
  35. 35.
    Pei Z. Intuitionistic fuzzy variables: concepts and applications in decision making. Expert Syst Appl. 2015;42 (22):9033–9045.CrossRefGoogle Scholar
  36. 36.
    Peng B, Ye CM, Zeng SZ. Some intuitionist fuzzy weighted geometric distance measures and their application to group decision making. Int J U Fuzz Knowl-Based Syst. 2014;22(5):699–715.CrossRefGoogle Scholar
  37. 37.
    Puri J, Yadav SP. Intuitionistic fuzzy data envelopment analysis: an application to the banking sector in India. Expert Syst Appl. 2015;42(11):4982–4998.CrossRefGoogle Scholar
  38. 38.
    Sklar M. Fonctions de répartition a n dimensions et leurs marges. Uni. Paris. 1959; 8.Google Scholar
  39. 39.
    Su ZX, Xia GP, Chen MY, Wang L. Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making. Expert Syst Appl. 2012;39:1902–1910.CrossRefGoogle Scholar
  40. 40.
    Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000;114:505–518.CrossRefGoogle Scholar
  41. 41.
    Torra V. Hesitant fuzzy sets. Int J Intel Syst. 2010;25:529–539.Google Scholar
  42. 42.
    Vasant PM. Handbook of research on artificial intelligence techniques and algorithms (2 volumes). Hershey: IGI Global; 2015, pp. 1–796.CrossRefGoogle Scholar
  43. 43.
    Vasant PM. Handbook of research on novel soft computing intelligent algorithms: theory and practical applications (2 volumes). Hershey: IGI Global; 2014, pp. 1–1018.CrossRefGoogle Scholar
  44. 44.
    Vasant PM. Meta-heuristics optimization algorithms in engineering, business, economics and finance. Hershey: IGI Global; 2013, pp. 1–734.CrossRefGoogle Scholar
  45. 45.
    Wang JQ, Li JJ. Multi-criteria fuzzy decision-making method based on cross entropy and score functions. Expert Syst Appl. 2011;38:1032–1038.CrossRefGoogle Scholar
  46. 46.
    Wang JQ, Nie RR, Zhang HY, Chen XH. Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning. Appl Soft Comput 2013;13:1823–1831.CrossRefGoogle Scholar
  47. 47.
    Wang WZ, Liu XW. Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 2012;20:923–938.CrossRefGoogle Scholar
  48. 48.
    Wang YM. Using the method of maximizing deviations to make decision for multiindicies. Syst Eng Electron 1998;7:24–26, 31.Google Scholar
  49. 49.
    Wu JZ, Chen F, Nie CP, Zhang Q. Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making. Inf Intuitionistic fuzzy-valued Choquet Sci. 2013;222:509–527.Google Scholar
  50. 50.
    Wu ZB, Chen YH. The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets Syst. 2007;158:1608–1617.CrossRefGoogle Scholar
  51. 51.
    Xia MM, Xu ZS, Zhu B. Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl-Based Syst. 2012;31:78–88.CrossRefGoogle Scholar
  52. 52.
    Xu YJ, Wang HM. The induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making. Appl Soft Comput. 2012;12:1168–1179.CrossRefGoogle Scholar
  53. 53.
    Xu ZS. Intuitionistic fuzzy aggregation and clustering. Studies in fuzziness and soft computing. In: Kacprzyk J, editors. Berlin: Springer; 2012.Google Scholar
  54. 54.
    Xu ZS. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst. 2007;15:1179–1187.CrossRefGoogle Scholar
  55. 55.
    Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst. 2006;35:417–433.CrossRefGoogle Scholar
  56. 56.
    Xu ZS, Zhao N. Information fusion for intuitionistic fuzzy decision making: an overview. Inform Fusion. 2016; 28:10– 23.CrossRefGoogle Scholar
  57. 57.
    Yager RR. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst M Cyber. 1988;18:183–190.CrossRefGoogle Scholar
  58. 58.
    Zadeh LA. Fuzzy sets. Inform Control. 1965;8:338–353.CrossRefGoogle Scholar
  59. 59.
    Zhao XF, Wei GW. Some intuitionistic fuzzy Einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl-Based Syst. 2013;37:472–479.CrossRefGoogle Scholar
  60. 60.
    Zhang HY, Ji P, Wang JQ, Chen XH. A neutrosophic normal cloud and its application in decision-making. Cogn Comput 2016;8(4):649–669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EconomicsAnhui UniversityHefeiChina
  2. 2.School of Mathematical SciencesAnhui UniversityHefeiChina

Personalised recommendations