Advertisement

Cognitive Computation

, Volume 10, Issue 4, pp 591–609 | Cite as

A Novel Spatiotemporal Longitudinal Methodology for Predicting Obesity Using Near Infrared Spectroscopy (NIRS) Cerebral Functional Activity Data

  • Ahsan Abdullah
  • Amir Hussain
  • Imtiaz Hussain Khan
Article

Abstract

Globally, there has been a dramatic increase in obesity, with prevalence in males and females expected to increase to 18 and 21%, respectively (NCD Risk Factor Collaboration, Lancet 387(10026):1377–96, 2016). However, there are hardly any data-analytic calorie-based cognitive studies, especially using non-invasive near infrared spectroscopy (NIRS) data that predict obesity using predictive data mining. Obesity is linked with neurodegenerative diseases, diabetes, and cardiovascular diseases. Thus, understanding, predicting, preventing, and managing obesity have the potential to save the lives of millions. Behavioral studies suggest that overeating in obese individuals is triggered by exaggerated brain reward center (BRC) activity to high-calorie food stimuli (Shefer et al., Neurosci Biobehav Rev 37(10):2489–503, 2013). In this paper, details of a novel research methodology are presented for a 24-month longitudinal study using a 44-channel NIRS device with the subjects in a natural environment. The proposed methodology consists of using visual stimuli of low/high calorie food items under fasting and satiated conditions for three types of subjects. The experiments consist of block design, longitudinal plan, data smoothing, BRC activation mapping, stereotactic normalization, generating paired t-test maps under fasting and non-fasting conditions and subsequently using Naïve Bayes modeling to generate obesity prediction maps for the control subjects. The simulated results consist of generation of Bayesian prediction maps using layers of paired t-test cerebral activity maps for the four BRC functional regions considered for three types of subjects, i.e., obese, control, and control subjects fed high calorie diet. We have demonstrated how cerebral functional activity data in response to visual food stimuli can be used to predict obesity in the non-obese, thus offering a non-invasive preventive measure.

Keywords

Prediction Data mining Noise Preventing obesity NIRS Naïve Bayes Paired t-test Calorie 

Notes

Acknowledgements

We also wish to thank the anonymous reviewers who helped improve the quality of the paper.

Funding Information

Professor A. Hussain was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/M026981/1.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Gortmaker SL, Wang YC, Long MW, Giles CM, Ward ZJ, Barrett JL, et al. Three interventions that reduce childhood obesity are projected to save more than they cost to implement. Health Aff. 2015;34(11):1932–9.  https://doi.org/10.1377/hlthaff.2015.0631.Google Scholar
  2. 2.
    The Long-Term Returns of Obesity Prevention Policies (2013), Robert Wood Johnson Foundation.Google Scholar
  3. 3.
    Ashrafian H, Harling L, Darzi A, Athanasiou T. Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions? Metab Brain Dis. 2013;28(3):341–53.  https://doi.org/10.1007/s11011-013-9412-4.PubMedGoogle Scholar
  4. 4.
    Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol. 2010;626(1):64–71.  https://doi.org/10.1016/j.ejphar.2009.10.022.PubMedGoogle Scholar
  5. 5.
    Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2009;1792(5):395–400.Google Scholar
  6. 6.
    Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, et al. Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity. 2008;16(1):119–24.  https://doi.org/10.1038/oby.2007.4.PubMedGoogle Scholar
  7. 7.
    Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol. 2005;5(1):23.  https://doi.org/10.1186/1471-2377-5-23.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sinus MRI scan, National Institute of Health, USA, http://www.nlm.nih.gov/medlineplus/ency/article/007356.htm
  9. 9.
    Shefer G, Marcus Y, Stern N. Is obesity a brain disease? Neurosci Biobehav Rev. 2013;37(10):2489–503.  https://doi.org/10.1016/j.neubiorev.2013.07.015.PubMedGoogle Scholar
  10. 10.
    Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci. 2010;1212(1):97–113.  https://doi.org/10.1111/j.1749-6632.2010.05799.x.PubMedGoogle Scholar
  11. 11.
    Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70(1):537–56.  https://doi.org/10.1146/annurev.physiol.70.113006.100707.PubMedGoogle Scholar
  12. 12.
    Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology & Metabolism. 2010;21(11):643–51.  https://doi.org/10.1016/j.tem.2010.08.002.Google Scholar
  13. 13.
    Elmquist JK, Flier JS. The fat-brain axis enters a new dimension. Science. 2004;304(5667):63–4.  https://doi.org/10.1126/science.1096746.PubMedGoogle Scholar
  14. 14.
    Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension. Hypertension. 2005;45(1):9–14.  https://doi.org/10.1161/01.HYP.0000151325.83008.b4.PubMedGoogle Scholar
  15. 15.
    Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 2005;493(1):63–71.  https://doi.org/10.1002/cne.20786.PubMedGoogle Scholar
  16. 16.
    Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15(10):1350–5.  https://doi.org/10.1038/nn.3217.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yi CX, Habegger KM, Chowen JA, Stern J, Tschöp MH. A role for astrocytes in the central control of metabolism. Neuroendocrinology. 2011;93(3):143–9.  https://doi.org/10.1159/000324888.PubMedGoogle Scholar
  18. 18.
    Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr. 2002;75(6):978–85.PubMedGoogle Scholar
  19. 19.
  20. 20.
    Yi CX, Habegger KM, Chowen JA, Stern J, Tschöp MH. A role for astrocytes in the central control of metabolism. Neuroendocrinology. 2011;93(3):143–9.  https://doi.org/10.1159/000324888.PubMedGoogle Scholar
  21. 21.
    Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol. 2010;626(1):64–71.  https://doi.org/10.1016/j.ejphar.2009.10.022.PubMedGoogle Scholar
  22. 22.
    Obesity crisis 'will force hospitals to use super-size MRI, Nov. 1, 2012, www.telegraph.co.uk
  23. 23.
    Cui X, Bray S, Reiss AL. Speeded near infrared spectroscopy (NIRS) response detection. PLoS One. 2010;5(11):e15474.  https://doi.org/10.1371/journal.pone.0015474.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage. 2011;54(4):2808–21.  https://doi.org/10.1016/j.neuroimage.2010.10.069.PubMedGoogle Scholar
  25. 25.
    Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 2006;29(2):368–82.  https://doi.org/10.1016/j.neuroimage.2005.08.065.PubMedGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Canning C, Scheutz M. Function near-infrared spectroscopy in human-robot interaction. J Hum Rob Interact. 2013;2:62–84.  https://doi.org/10.5898/jhri.v2i3.144.
  29. 29.
    Frey, J., Mühl, C., Lotte, F., and Hachet, M. (2014).Review of the use of electroencephalography as an evaluation method for human-computer interaction, in International Conference on Physiological Computing Systems (PhyCS). (Lisbon).Google Scholar
  30. 30.
    Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154(1-2):101–4.  https://doi.org/10.1016/0304-3940(93)90181-J.
  31. 31.
    Hoshi, Y. Towards the next generation of near-infrared spectroscopy. Philos Trans R Soc A Math Phys EngSci. 2011;369(1955):4425–39.  https://doi.org/10.1098/rsta.2011.0262.Google Scholar
  32. 32.
    Hirshfield, L., Chauncey, K., Gulotta, R., Girouard, A., Solovey, E., Jacob, R., et al. (2009a). Combining electroencephalograph and functional near infrared spectroscopy to explore users’ mental workload, in HCII, (Heidelberg: Springer-Verlag Berlin),239–247.Google Scholar
  33. 33.
    Heger D, Mutter R, Herff C, Putze F, and Schultz T. Continuous recognition of affective states by functional near infrared spectroscopy signals, in Affective computing and intelligent interaction (ACII). 2013. https://doi.org/10.1109/ACII.2013.156.Google Scholar
  34. 34.
    Killgore WD, Yurgelun-Todd DA. Affect modulates appetite-related brain activity to images of food. Int J Eat Disord. 2006;39(5):357–63.  https://doi.org/10.1002/eat.20240.PubMedGoogle Scholar
  35. 35.
    Aoki R, Sato H, Katura T, Utsugi K, Koizumi H, Matsuda R, et al. Relationship of negative mood with prefrontal cortex activity during working memory tasks: an optical topography study. Neurosci Res. 2011;70(2):189–96.  https://doi.org/10.1016/j.neures.2011.02.011.PubMedGoogle Scholar
  36. 36.
    Aoki R, Sato H, Katura T, Matsuda R, Koizumi H. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: an optical topography study. Psychiatry Res Neuroimag. 2013;212(1):79–87.  https://doi.org/10.1016/j.pscychresns.2012.10.009.Google Scholar
  37. 37.
    Hirshfield, L., Gulotta, R., Hirshfield, S., Hincks, S., Russell, M., Ward, R., et al. (2011a).This is your brain on interfaces: enhancing usability testing with functional near-infrared spectroscopy, in CHI, (New York, NY:ACM), 373–382.Google Scholar
  38. 38.
    Strait M, Briggs G, and Scheutz M. Some correlates of agency ascription and emotional value and their effects on decision-making, in IEEE Conference on Affective Computing and Intelligent Interaction (ACII), (Washington, DC); 2013. p. 505–10.  https://doi.org/10.1109/ACII.2013.89.
  39. 39.
    Strait, M., and Scheutz, M.(2014). Using near infrared spectroscopy to index temporal changes in affect in realistic human–robot interactions, in Physiological Computing Systems (PhyCS), Special Session on Affect Recognition from Physiological Data for Social Robots.Google Scholar
  40. 40.
    Tupak S, Dresler T, Guhn A, Ehlis A, Fallgatter A, Pauli P, et al. Implicit motion regulation in the presence of threat: neural and autonomic correlates. NeuroImage. 2014;85:372–9.  https://doi.org/10.1016/j.neuroimage.2013.09.066.
  41. 41.
    Liu Y, Sourina O, Nguyen M. Real-time EEG-based emotion recognition and its applications. In: Gavrilova ML, Kenneth Tan CJ, Sourin A, Sourina O, editors. Transactions on Computational Science XII. Berlin: Springer; 2011. p. 256–77.  https://doi.org/10.1007/978-3-642-22336-5_13.Google Scholar
  42. 42.
    Glisky EL. Changes in cognitive function in human aging. Brain aging: Models, methods, and mechanisms. 2007;19:3–20.Google Scholar
  43. 43.
    Chan JS, Yan JH, Payne VG. The impact of obesity and exercise on cognitive aging. Front Aging Neurosci. 2013;5:97.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Obesity, diabetes and cognitive deficit: the Framingham heart study. Neurobiol Aging. 2005;26(1):11–6.  https://doi.org/10.1016/j.neurobiolaging.2005.08.019.PubMedGoogle Scholar
  45. 45.
    Jeong SK, Nam HS, Son MH, Son EJ, Cho KH. Interactive effect of obesity indexes on cognition. Dement Geriatr Cogn Disord. 2005;19(2–3):91–6.  https://doi.org/10.1159/000082659.PubMedGoogle Scholar
  46. 46.
    Hassing LB, Dahl AK, Pedersen NL, Johansson B. Overweight in midlife is related to lower cognitive function 30 years later: a prospective study with longitudinal assessments. Dement Geriatr Cogn Disord. 2010;29(6):543–52.  https://doi.org/10.1159/000314874.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cournot MC, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67(7):1208–14.  https://doi.org/10.1212/01.wnl.0000238082.13860.50.PubMedGoogle Scholar
  48. 48.
    Mond JM, Rodgers B, Hay PJ, Darby A, Owen C, Baune BT, et al. Obesity and impairment in psychosocial functioning in women: the mediating role of eating disorder features. Obesity. 2007;15(11):2769–79.  https://doi.org/10.1038/oby.2007.329.PubMedGoogle Scholar
  49. 49.
    Lokken KL, Boeka AG, Austin HM, Gunstad J, Harmon CM. Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surg Obes Relat Dis. 2009;5(5):547–52.  https://doi.org/10.1016/j.soard.2009.05.008.PubMedGoogle Scholar
  50. 50.
    Sabia S, Nabi H, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. Health behaviors from early to late midlife as predictors of cognitive function the Whitehall II Study. American Journal of Epidemiology. 2009:kwp161.Google Scholar
  51. 51.
    Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199(3):457–80.  https://doi.org/10.1007/s00213-008-1099-6.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199(3):457–80.  https://doi.org/10.1007/s00213-008-1099-6.PubMedPubMedCentralGoogle Scholar
  53. 53.
  54. 54.
  55. 55.
    Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76(3):470–85.  https://doi.org/10.1016/j.neuron.2012.10.021.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kringelbach ML, Berridge KC. The functional neuroanatomy of pleasure and happiness. Discov Med. 2010;9(49):579–87.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ellison Z, Foong J, Howard R, Bullmore E, Williams S, Treasure J. Functional anatomy of calorie fear in anorexia nervosa. Lancet. 1998;352(9135):1192.  https://doi.org/10.1016/S0140-6736(05)60529-6.PubMedGoogle Scholar
  58. 58.
    Naruo T, Nakabeppu Y, Sagiyama KI, Munemoto T, Homan N, Deguchi D, et al. Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior. Am J Psychiatr. 2000;157(9):1520–2.  https://doi.org/10.1176/appi.ajp.157.9.1520.PubMedGoogle Scholar
  59. 59.
    Gordon CM, Dougherty DD, Fischman AJ, Emans SJ, Grace E, Lamm R, et al. Neural substrates of anorexia nervosa: a behavioral challenge study with positron emission tomography. J Pediatr. 2001;139(1):51–7.  https://doi.org/10.1067/mpd.2001.114768.PubMedGoogle Scholar
  60. 60.
    Uher R, Murphy T, Brammer MJ, Dalgleish T, Phillips ML, Ng VW, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatr. 2004;161(7):1238–46.  https://doi.org/10.1176/appi.ajp.161.7.1238.PubMedGoogle Scholar
  61. 61.
    Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage. 2011;54(4):2808–21.  https://doi.org/10.1016/j.neuroimage.2010.10.069.PubMedGoogle Scholar
  62. 62.
    Lennerz BS, Alsop DC, Holsen LM, Stern E, Rojas R, Ebbeling CB, et al. Effects of dietary glycemic index on brain regions related to reward and craving in men. Am J Clin Nutr. 2013;98(3):641–7.  https://doi.org/10.3945/ajcn.113.064113.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes. 2009;33(6):653–61.  https://doi.org/10.1038/ijo.2009.56.Google Scholar
  64. 64.
    Frank S, Laharnar N, Kullmann S, Veit R, Canova C, Hegner YL, et al. Processing of food pictures: influence of hunger, gender and calorie content. Brain Res. 2010;1350:159–66.  https://doi.org/10.1016/j.brainres.2010.04.030.PubMedGoogle Scholar
  65. 65.
    Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage. 2007;37(2):410–21.  https://doi.org/10.1016/j.neuroimage.2007.05.008.PubMedGoogle Scholar
  66. 66.
    Page KA, Seo D, De Belfort-Aguiar R, Lacadie C, Dzuira J, Naik S, et al. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011;121(10):4161–9.  https://doi.org/10.1172/JCI57873.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Sun R. Anatomy of the mind: a quick overview. Cogn Comput. 2016;8(1):1–4.  https://doi.org/10.1007/s12559-015-9374-4.Google Scholar
  68. 68.
    Alonso-Alonso M, Woods SC, Pelchat M, Grigson PS, Stice E, Farooqi S, et al. Food reward system: current perspectives and future research needs. Nutr Rev. 2015;73(5):296–307.  https://doi.org/10.1093/nutrit/nuv002.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Laurent PAA. Neural mechanism for reward discounting: insights from modeling hippocampal–striatal interactions. Cogn Comput. 2013;5(1):152–60.  https://doi.org/10.1007/s12559-012-9178-8.Google Scholar
  70. 70.
    Simmank J, Murawski C, Bode S, Horstmann A. Incidental rewarding cues influence economic decisions in people with obesity. Front Behav Neurosci. 2015;9  https://doi.org/10.3389/fnbeh.2015.00278.
  71. 71.
    Abdullah A, Khan IH, Basuhail A, Hussain A. A novel near-infrared spectroscopy based spatiotemporal cognition study of the human brain using clustering. Cogn Comput. 2015;7(6):693–705.  https://doi.org/10.1007/s12559-015-9358-4.Google Scholar
  72. 72.
    Asano H. The estimation of taste preference based on prefrontal cortex activity. In International Conference on Human-Computer Interaction 2015 Aug 2 (pp. 707-711). Springer International Publishing.Google Scholar
  73. 73.
    Suda M, Uehara T, Fukuda M, Sato T, Kameyama M, Mikuni M. Dieting tendency and eating behavior problems in eating disorder correlate with right frontotemporal and left orbitofrontal cortex: a near-infrared spectroscopy study. J Psychiatr Res. 2010;44(8):547–55.  https://doi.org/10.1016/j.jpsychires.2009.11.005.PubMedGoogle Scholar
  74. 74.
    Kober SE, Wood G. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. NeuroImage. 2014;93:1–0.  https://doi.org/10.1016/j.neuroimage.2014.02.019.PubMedGoogle Scholar
  75. 75.
    Okamoto M, Dan I. Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. J Biosci Bioeng. 2007;103(3):207–15.  https://doi.org/10.1263/jbb.103.207.PubMedGoogle Scholar
  76. 76.
    Rohlfs-Domínguez P. Studying the effects of smell and taste experience in the pediatric population using functional near infrared spectroscopy: a hypothesis. Med Hypotheses. 2014;82(1):89–93.  https://doi.org/10.1016/j.mehy.2013.11.014.PubMedGoogle Scholar
  77. 77.
    Stoeckel LE, Weller RE, Cook EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41(2):636–47.  https://doi.org/10.1016/j.neuroimage.2008.02.031.PubMedGoogle Scholar
  78. 78.
    Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. Cortical and limbic activation during viewing of high-versus low-calorie foods. NeuroImage. 2003;19(4):1381–94.  https://doi.org/10.1016/S1053-8119(03)00191-5.PubMedGoogle Scholar
  79. 79.
    Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron. 2008 Mar 13;57(5):786–97.  https://doi.org/10.1016/j.neuron.2008.01.021.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sparse Bayesian Learning for obtaining sparsity of EEG frequency bands based feature vectors in Motor Imagery Classification. International Journal of Neural Systems, 2017.Google Scholar
  81. 81.
    Bayesian nonnegative CP decomposition-based feature extraction algorithm for drowsiness detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016.Google Scholar
  82. 82.
    Sparse Bayesian classification of EEG for brain-computer interface. IEEE Transactions on Neural Networks and Learning Systems, 2016.Google Scholar
  83. 83.
    Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition. Neurocomputing, 2017.Google Scholar
  84. 84.
    Hosseini SM, Mano Y, Rostami M, Takahashi M, Sugiura M, Kawashima R. Decoding what one likes or dislikes from single-trial fNIRS measurements. Neuroreport. 2011;22(6):269–73.  https://doi.org/10.1097/WNR.0b013e3283451f8f21372746. PubMedGoogle Scholar
  85. 85.
    Nagamitsu S, Yamashita F, Araki Y, Iizuka C, Ozono S, Komatsu H, et al. Characteristic prefrontal blood volume patterns when imaging body type, high-calorie food, and mother–child attachment in childhood anorexia nervosa: a near infrared spectroscopy study. Brain and Development. 2010;32(2):162–7.  https://doi.org/10.1016/j.braindev.2009.01.PubMedGoogle Scholar
  86. 86.
    Luu S, Chau T. Neural representation of degree of preference in the medial prefrontal cortex. Neuroreport. 2009;20(18):1581–5.  https://doi.org/10.1097/WNR.PubMedGoogle Scholar
  87. 87.
    Shimokawa T, Misawa T, Suzuki K. Neural representation of preference relationships. Neuroreport. 2008;19(16):1557–61.  https://doi.org/10.1097/WNR.PubMedGoogle Scholar
  88. 88.
  89. 89.
    Lazar N. The statistical analysis of functional MRI data. Springer Science & Business Media; 2008.Google Scholar
  90. 90.
    Diekmann V, Becker W, Jürgens R, Grözinger B, Kleiser B, Richter H, et al. Localisation of epileptic foci with electric, magnetic and combined electronic models. Electroencephalogr Clin Neurophysiol. 1998;106(4):297–313.  https://doi.org/10.1016/S0013-4694(97)00142-9.PubMedGoogle Scholar
  91. 91.
    Chaddad A. Brain function diagnosis enhanced using denoised FNIRS raw signals. J Biomed Sci Eng. 2014;6:2014.Google Scholar
  92. 92.
    Hashimoto T, Minagawa-Kawai Y, Kojima S. Motion illusion activates the visual motion area of the brain: a near-infrared spectroscopy (NIRS) study. Brain Res. 2006;1077(1):116–22.  https://doi.org/10.1016/j.brainres.2005.11.050.PubMedGoogle Scholar
  93. 93.
    Shibuya K, Kuboyama N. Human motor cortex oxygenation during exhaustive pinching task. Brain Res. 2007;1156:120–4.  https://doi.org/10.1016/j.brainres.2007.05.009.PubMedGoogle Scholar
  94. 94.
    Watanabe H, Homae F, Nakano T, Taga G. Functional activation in diverse regions of the developing brain of human infants. NeuroImage. 2008 Nov 1;43(2):346–57.  https://doi.org/10.1016/j.neuroimage.2008.07.014.PubMedGoogle Scholar
  95. 95.
    Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009 Apr 1;48(10):D280–98.  https://doi.org/10.1364/AO.48.00D280.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994 Mar 1;18(2):192–205.  https://doi.org/10.1097/00004728-199403000-00005.PubMedGoogle Scholar
  97. 97.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002 Jan 31;15(1):273–89.  https://doi.org/10.1006/nimg.2001.0978.PubMedGoogle Scholar
  98. 98.
    Berson A, Smith SJ. Building data mining applications for CRM. Inc.: McGraw-Hill; 2002.Google Scholar
  99. 99.
    Mourão-Miranda J, Reynaud E, McGlone F, Calvert G, Brammer M. The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage. 2006;33(4):1055–65.  https://doi.org/10.1016/j.neuroimage.2006.08.016.PubMedGoogle Scholar
  100. 100.
    Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage. 2003;19(2 Pt 1):261–70.  https://doi.org/10.1016/S1053-8119(03)00049-1.PubMedGoogle Scholar
  101. 101.
    C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Proceedings of the Thirteenth International Conference on Machine Learning, pages 71{77, Bari, Italy, 1996. Morgan Kaufmann.Google Scholar
  102. 102.
    C. J. C. Burges and B. Scholkopf. Improving the accuracy and speed of support vector machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375{381. MIT Press, 1997.Google Scholar
  103. 103.
    Down T. Computational localization of promoters and transcription start sites in mammalian genomes. University of Cambridge: Doctoral dissertation; 2004.Google Scholar
  104. 104.
    J. Ross Quinlan, C4.5: programs for machine learning, ISBN: 1558602402, 2014.Google Scholar
  105. 105.
    Zhao Y. and Zhang Y., Comparison of decision tree methods for finding active objects, Journal of Advances of Space Research, pp: 1–14, 2007.Google Scholar
  106. 106.
    Nayab N. Disadvantages to using decision trees. http://www.brighthubpm.com/projectplanning/106005-disadvantages-to-using-decision-trees/. Accessed 27 June 2015.
  107. 107.
  108. 108.
    Langely P, Iba W, Thompson K. An analysis of Bayesian classifier. In Proceedings of the 10th national Conference on Artif Intell 1992 (pp. 223–228).Google Scholar
  109. 109.
  110. 110.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahsan Abdullah
    • 1
  • Amir Hussain
    • 2
  • Imtiaz Hussain Khan
    • 3
  1. 1.Foundation UniversityRawalpindiPakistan
  2. 2.University of StirlingStirlingUK
  3. 3.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations