Skip to main content
Log in

Semantic Category-Based Classification Using Nonlinear Features and Wavelet Coefficients of Brain Signals

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The problem of object recognition is solved in the brain using different strategies. These strategies are to some extent known to neuroscientists, but researches on this issue are still in progress to understand more accurately the computational, anatomical, and physiological aspects of this fast and accurate capability of the brain. In this paper, we presented a method, based on extracting nonlinearity of signals such as L-Z complexity, fractal dimension, Lyapunov exponents, Hurst exponents, and entropy, to classify single trials into their related semantic category groups with a linear SVM classifier. Furthermore, we proposed to combine nonlinear features mentioned above with wavelet coefficients to improve the classification accuracy. EEG signals were recorded from human subjects according to 10–20 system while performing a “go/no go” object-categorization task. Combining nonlinear features with wavelet coefficients led to a significant enhancement in classification accuracy (73%) relative to wavelet coefficients alone (54%). Feature-selection results showed that a significantly larger proportion of final selected features include nonlinear features (44%) relative to the first ratio of them (14%) to whole features. This ratio enhancement demonstrates the essential role of nonlinear features in the obtained classification accuracy. In addition, C3 channel and Katz fractal dimension were introduced as the most informative channel and the best nonlinear feature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;73(3):415–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kourtzi Z, Connor CE. Neural representations for object perception: structure, category, and adaptive coding. Annu Rev Neurosci. 2011;34:45–67.

    Article  PubMed  CAS  Google Scholar 

  3. Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;33:203–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rosch E. Cognitive representations of semantic categories. J Exp Psychol Gen. 1975;104(3):192.

    Article  Google Scholar 

  5. Fabre-Thorpe M, Richard G, Thorpe SJ. Rapid categorization of natural images by rhesus monkeys. Neuroreport. 1998;9(2):303–8.

    Article  PubMed  CAS  Google Scholar 

  6. Freedman DJ, et al. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291(5502):312–6.

    Article  PubMed  CAS  Google Scholar 

  7. Macé MJ-M, et al. Rapid categorization of natural scenes in monkeys: target predictability and processing speed. Neuroreport. 2005;16(4):349–54.

    Article  PubMed  Google Scholar 

  8. Reddy L, Kanwisher N. Category selectivity in the ventral visual pathway confers robustness to clutter and diverted attention. Curr Biol. 2007;17(23):2067–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mormann F, et al. A category-specific response to animals in the right human amygdala. Nat Neurosci. 2011;14(10):1247–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cauchoix M, et al. Fast ventral stream neural activity enables rapid visual categorization. NeuroImage. 2016;125:280–90.

    Article  PubMed  Google Scholar 

  11. Goddard E, et al. Representational dynamics of object recognition: feedforward and feedback information flows. NeuroImage. 2016;128:385–97.

    Article  PubMed  Google Scholar 

  12. Connor CE, Brincat SL, Pasupathy A. Transformation of shape information in the ventral pathway. Curr Opin Neurobiol. 2007;17(2):140–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lowe DG. Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on. 1999: Ieee.

  14. Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.

    Article  PubMed  CAS  Google Scholar 

  15. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.

    Article  PubMed  CAS  Google Scholar 

  16. Pinto N, et al. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol. 2009;5(11):e1000579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Freedman DJ, et al. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol. 2002;88(2):929–41.

    Article  PubMed  Google Scholar 

  18. Freedman DJ, et al. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23(12):5235–46.

    Article  PubMed  CAS  Google Scholar 

  19. Bar M, et al. Top-down facilitation of visual recognition. Proc Natl Acad Sci U S A. 2006;103(2):449–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. McKee JL, et al. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci. 2014;34(48):16065–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baldassi C, et al. Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons. PLoS Comput Biol. 2013;9(8):e1003167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rodríguez-Bermúdez G, García-Laencina PJ. Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J Med Syst. 2012;36(1):51–63.

    Article  Google Scholar 

  23. Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehab Eng. 2000;8(4):441–6.

    Article  CAS  Google Scholar 

  24. Sun H, et al. On-line EEG classification for brain-computer interface based on CSP and SVM. In Image and Signal Processing (CISP), 2010 3rd International Congress on. 2010: IEEE.

  25. Krusienski DJ, McFarland DJ, Wolpaw JR. An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. 2006: IEEE.

  26. Zhang Y, et al. Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process Lett. 2016:1–14.

  27. Taghizadeh-Sarabi M, Daliri MR, Niksirat KS. Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr. 2015;28(1):33–46.

    Article  PubMed  Google Scholar 

  28. Jafakesh S, Jahromy FZ, Daliri MR. Decoding of object categories from brain signals using cross frequency coupling methods. Biomed Signal Process Control. 2016;27:60–7.

    Article  Google Scholar 

  29. Jalili M. Multivariate synchronization analysis of brain electroencephalography signals: a review of two methods. Cogn Comput. 2015;7(1):3–10.

    Article  Google Scholar 

  30. Orozco-Arroyave JR, et al. Nonlinear dynamics for hypernasality detection in Spanish vowels and words. Cogn Comput. 2013;5(4):448–57.

    Article  Google Scholar 

  31. Arias-Londono JD, et al. Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients. IEEE Trans Biomed Eng. 2011;58(2):370–9.

    Article  PubMed  Google Scholar 

  32. Acharya UR, et al. A novel depression diagnosis index using nonlinear features in EEG signals. Eur Neurol. 2015;74(1–2):79–83.

    Article  PubMed  Google Scholar 

  33. Acharya R, et al. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Prog Biomed. 2005;80(1):37–45.

    Article  Google Scholar 

  34. Spratling M. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput. 2016:1–17.

  35. Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.

    Article  Google Scholar 

  36. Ghesu FC, et al. Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging. 2016;35(5):1217–28.

    Article  PubMed  Google Scholar 

  37. Bar Y, et al. Deep learning with non-medical training used for chest pathology identification. In SPIE Medical Imaging. 2015: International Society for Optics and Photonics.

  38. Liskowski P, Krawiec K. Segmenting retinal blood vessels with<? Pub _newline?> deep neural networks. IEEE Trans Med Imaging. 2016;35(11):2369–80.

    Article  PubMed  Google Scholar 

  39. Roth HR, et al. Improving computer-aided detection using Convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016;35(5):1170–81.

    Article  PubMed  Google Scholar 

  40. Manor R, Geva AB. Convolutional neural network for multi-category rapid serial visual presentation bci. Front Comput Neurosci. 2015;9

  41. Manor R, Mishali L, Geva AB. Multimodal neural network for rapid serial visual presentation brain computer interface. Front Comput Neurosci. 2016;10

  42. Lin Y-P, et al. Support vector machine for EEG signal classification during listening to emotional music. In Multimedia Signal Processing, 2008 I.E. 10th Workshop on. 2008: IEEE.

  43. Zhang Y, et al. Comparison of classification methods on EEG signals based on wavelet packet decomposition. Neural Comput & Applic. 2015;26(5):1217–25.

    Article  Google Scholar 

  44. Tanveer M. Robust and sparse linear programming twin support vector machines. Cogn Comput. 2015;7(1):137–49.

    Article  Google Scholar 

  45. Sanei S, Chambers JA. EEG signal processing. John Wiley & Sons; 2013.

  46. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005;116(10):2266–301.

    Article  PubMed  CAS  Google Scholar 

  47. Galka A. Topics in nonlinear time series analysis: with implications for EEG analysis. Vol. 14, World Scientific. 2000.

  48. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena. 1997;110(1):43–50.

    Article  Google Scholar 

  49. Lempel A, Ziv J. On the complexity of finite sequences. IEEE Trans Inf Theory. 1976;22(1):75–81.

    Article  Google Scholar 

  50. Aboy M, et al. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng. 2006;53(11):2282–8.

    Article  PubMed  Google Scholar 

  51. Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena. 1988;31(2):277–83.

    Article  Google Scholar 

  52. Katz MJ. Fractals and the analysis of waveforms. Comput Biol Med. 1988;18(3):145–56.

    Article  PubMed  CAS  Google Scholar 

  53. Lai D, Chen G. Statistical analysis of Lyapunov exponents from time series: a Jacobian approach. Math Comput Model. 1998;27(7):1–9.

    Article  Google Scholar 

  54. Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett. 1985;55(10):1082.

    Article  PubMed  CAS  Google Scholar 

  55. Güler NF, Übeyli ED, Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl. 2005;29(3):506–14.

    Article  Google Scholar 

  56. Balli T, Palaniappan R. Classification of biological signals using linear and nonlinear features. Physiol Meas. 2010;31(7):903.

    Article  PubMed  CAS  Google Scholar 

  57. Kaplan I. Estimating the Hurst exponent. 2003. Available from: www.bearcave.com/misl/misl tech/wavelets/hurst/index.

  58. Bruhn J, Röpcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. J Am Soc Anesthesiol. 2000;92(3):715–26.

    Article  CAS  Google Scholar 

  59. Pincus SM, Huang W-M. Approximate entropy: statistical properties and applications. Commun Stat-Theory Methods. 1992;21(11):3061–77.

    Article  Google Scholar 

  60. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys. 2000;278(6):H2039–49.

    CAS  Google Scholar 

  61. Guo L, et al. Classification of EEG signals using relative wavelet energy and artificial neural networks. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. 2009: ACM.

  62. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST). 2011;2(3):27.

    Google Scholar 

  63. Gallese V, et al. Action recognition in the premotor cortex. Brain. 1996;119(2):593–609.

    Article  PubMed  Google Scholar 

  64. Rizzolatti G, et al. Premotor cortex and the recognition of motor actions. Cogn Brain Res. 1996;3(2):131–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Iran Neural Technology Research Center, Iran University of Science and Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Daliri.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, A., Zareayan Jahromy, F. & Daliri, M.R. Semantic Category-Based Classification Using Nonlinear Features and Wavelet Coefficients of Brain Signals. Cogn Comput 9, 702–711 (2017). https://doi.org/10.1007/s12559-017-9487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-017-9487-z

Keywords

Navigation