Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis


An emerging field within sentiment analysis concerns the investigation about how sentiment polarities associated with concepts have to be adapted with respect to the different domains in which they are used. In this paper, we explore the use of fuzzy logic for modeling concept polarities, and the uncertainty associated with them, with respect to different domains. The approach is based on the use of a knowledge graph built by combining two linguistic resources, namely WordNet and SenticNet. Such a knowledge graph is then exploited by a graph-propagation algorithm that propagates sentiment information learned from labeled datasets. The system implementing the proposed approach has been evaluated on the Blitzer dataset. The results demonstrate its viability in real-world cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

    Detailed results and tool demo are available at


  1. 1.

    Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP), Philadelphia, Association for Computational Linguistics; July 2002. p. 79–86.

  2. 2.

    Liu B, Zhang L. A survey of opinion mining and sentiment analysis. In: Aggarwal CC, Zhai CX, editors. Mining text data. Berlin: Springer; 2012. p. 415–63.

    Google Scholar 

  3. 3.

    Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL; 2007. p. 187–205.

  4. 4.

    Pang B, Lee L. Opinion mining and sentiment analysis. Found Trends Inf Retr. 2008;2(1–2):1–135.

    Article  Google Scholar 

  5. 5.

    Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL; 2004. p. 271–78.

  6. 6.

    Dave K, Lawrence S, Pennock DM. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW; 2003. p. 519–28.

  7. 7.

    Paltoglou G, Thelwall M. A study of information retrieval weighting schemes for sentiment analysis. In: ACL; 2010. p. 1386–95.

  8. 8.

    Tan S, Wang Y, Cheng X. Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR; 2008. p. 743–44.

  9. 9.

    Qiu L, Zhang W, Hu C, Zhao K. Selc: a self-supervised model for sentiment classification. In: CIKM; 2009. p. 929–36.

  10. 10.

    Melville P, Gryc W, Lawrence RD. Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD; 2009. p. 1275–284.

  11. 11.

    Taboada M, Brooke J, Tofiloski M, Voll KD, Stede M. Lexicon-based methods for sentiment analysis. Comput Linguist. 2011;37(2):267–307.

    Article  Google Scholar 

  12. 12.

    Turney PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL; 2002. p. 417–24.

  13. 13.

    Somasundaran S. Discourse-level relations for opinion analysis. PhD thesis, University of Pittsburgh; 2010.

  14. 14.

    Asher N, Benamara F, Mathieu YY. Distilling opinion in discourse: a preliminary study. In: COLING (Posters); 2008. p. 7–10.

  15. 15.

    Wang H, Zhou G. Topic-driven multi-document summarization. In: IALP; 2010. p. 195–98.

  16. 16.

    Riloff E, Patwardhan S, Wiebe J. Feature subsumption for opinion analysis. In: EMNLP; 2006. p. 440–48.

  17. 17.

    Wiebe J, Wilson T, Bruce RF, Bell M, Martin M. Learning subjective language. Comput Linguist. 2004;30(3):277–308.

    Article  Google Scholar 

  18. 18.

    Wilson T, Wiebe J, Hwa R. Just how mad are you? Finding strong and weak opinion clauses. In: AAAI; 2004. p. 761–69.

  19. 19.

    Wilson T, Wiebe J, Hwa R. Recognizing strong and weak opinion clauses. Comput Intell. 2006;22(2):73–99.

    Article  Google Scholar 

  20. 20.

    Yu H, Hatzivassiloglou V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 conference on empirical methods in natural language processing. EMNLP ’03. Stroudsburg, PA: Association for Computational Linguistics; 2003. p. 129–36.

  21. 21.

    Hatzivassiloglou V, Wiebe J. Effects of adjective orientation and gradability on sentence subjectivity. In: COLING; 2000. p. 299–305.

  22. 22.

    Kim SM, Hovy EH. Crystal: Analyzing predictive opinions on the web. In: EMNLP-CoNLL; 2007. p. 1056–64.

  23. 23.

    Kim SM, Pantel P, Chklovski T, Pennacchiotti M. Automatically assessing review helpfulness. In: EMNLP; 2006. p. 423–30.

  24. 24.

    Jakob N, Gurevych I. Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP; 2010. p. 1035–45.

  25. 25.

    Lafferty JD, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML; 2001. p. 282–89.

  26. 26.

    Freitag D, McCallum A. Information extraction with HMM structures learned by stochastic optimization. In: AAAI/IAAI; 2000. p. 584–89.

  27. 27.

    Jin W, Ho HH. A novel lexicalized HMM-based learning framework for web opinion mining. In: Proceedings of the 26th annual international conference on machine learning, ICML ’09. New York, NY: ACM; 2009. p. 465–72.

  28. 28.

    Jin W, Ho HH, Srihari RK. Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD; 2009. p. 1195–1204.

  29. 29.

    Liu B, Hu M, Cheng J. Opinion observer: analyzing and comparing opinions on the web. In: WWW; 2005. p. 342–51.

  30. 30.

    Wu Y, Zhang Q, Huang X, Wu L. Phrase dependency parsing for opinion mining. In: EMNLP; 2009. p. 1533–41.

  31. 31.

    Su Q, Xu X, Guo H, Guo Z, Wu X, Zhang X, Swen B, Su Z. Hidden sentiment association in chinese web opinion mining. In: WWW; 2008. p. 959–68.

  32. 32.

    Qiu G, Liu B, Bu J, Chen C. Expanding domain sentiment lexicon through double propagation. In: IJCAI; 2009. p. 1199–1204.

  33. 33.

    Qiu G, Liu B, Bu J, Chen C. Opinion word expansion and target extraction through double propagation. Comput Linguist. 2011;37(1):9–27.

    Article  Google Scholar 

  34. 34.

    Barbosa L, Feng J. Robust sentiment detection on twitter from biased and noisy data. In: COLING (Posters); 2010. p. 36–44.

  35. 35.

    Bermingham A, Smeaton AF. Classifying sentiment in microblogs: is brevity an advantage? In: CIKM; 2010. p. 1833–36.

  36. 36.

    Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University; 2009.

  37. 37.

    Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. Volume 2 of Springerbriefs in cognitive computation. Dordrecht: Springer; 2012.

    Google Scholar 

  38. 38.

    Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cognit Comput. 2012;4(4):477–96.

    Article  Google Scholar 

  39. 39.

    Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten chinese recognition. Cognit Comput. 2013;5(2):234–42.

    Article  Google Scholar 

  40. 40.

    Aue A, Gamon M. Customizing sentiment classifiers to new domains: a case study. In: Proceedings of RANLP; 2005.

  41. 41.

    Yang H, Callan J, Si L. Knowledge transfer and opinion detection in the TREC 2006 blog track. In: TREC; 2006.

  42. 42.

    Pan SJ, Ni X, Sun JT, Yang Q, Chen Z. Cross-domain sentiment classification via spectral feature alignment. In: WWW; 2010. p. 751–60.

  43. 43.

    Bollegala D, Weir DJ, Carroll JA. Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans Knowl Data Eng. 2013;25(8):1719–31.

    Article  Google Scholar 

  44. 44.

    Xia R, Zong C, Hu X, Cambria E. Feature ensemble plus sample selection: domain adaptation for sentiment classification. IEEE Int Syst. 2013;28(3):10–8.

    Article  CAS  Google Scholar 

  45. 45.

    Yoshida Y, Hirao T, Iwata T, Nagata M, Matsumoto Y. Transfer learning for multiple-domain sentiment analysis—identifying domain dependent/independent word polarity. In: AAAI; 2011. p. 1286–91.

  46. 46.

    Ponomareva N, Thelwall M. Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP; 2013. p. 571–78.

  47. 47.

    Tsai ACR, Wu CE, Tsai RTH, Jen Hsu JY. Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Int Syst. 2013;28(2):22–30.

    Article  Google Scholar 

  48. 48.

    Tai YJ, Kao HY. Automatic domain-specific sentiment lexicon generation with label propagation. In: iiWAS, ACM; 2013. p. 53:53–53:62.

  49. 49.

    Huang S, Niu Z, Shi C. Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl Based Syst. 2014;56:191–200.

    Article  Google Scholar 

  50. 50.

    Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–53.

    Article  Google Scholar 

  51. 51.

    Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978;1:3–28.

    Article  Google Scholar 

  52. 52.

    Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci. 1975;8(3):199–249.

    Article  Google Scholar 

  53. 53.

    Hellendoorn H, Thomas C. Defuzzification in fuzzy controllers. Intell Fuzzy Syst. 1993;1:109–23.

    Google Scholar 

  54. 54.

    Fellbaum C. WordNet: an electronic lexical database. Cambridge: MIT Press; 1998.

    Google Scholar 

  55. 55.

    Cambria E, Olsher D, Rajagopal D. Senticnet 3: a common and common-sense knowledge base for cognition–driven sentiment analysis. In: AAAI; 2014. p. 1515–21.

  56. 56.

    Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC; 2010. p. 2200–04.

  57. 57.

    Grassi M. Developing heo human emotions ontology. In: COST 2101/2102 conference; 2009. p. 244–51.

  58. 58.

    Dong W, Shah H, Wong F. Fuzzy computations in risk and decision analysis. Civ Eng Syst. 1985;2:201–8.

    Article  Google Scholar 

  59. 59.

    Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Chang CC, Lin CJ. Libsvm: a library for support vector machines. ACM TIST. 2011;2(3):27:1–27.

    Google Scholar 

  61. 61.

    McCallum AK. Mallet: a machine learning for language toolkit. (2002).

Download references

Author information



Corresponding author

Correspondence to Mauro Dragoni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragoni, M., Tettamanzi, A.G.B. & da Costa Pereira, C. Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis. Cogn Comput 7, 186–197 (2015).

Download citation


  • Sentiment analysis
  • Multi-domain learning
  • Fuzzy logic