Skip to main content

Meteorological Prediction Implemented on Field-Programmable Gate Array


In this work, a temperature predictor has been designed. The prediction is made by a multilayer perceptron neural network. Initially, the floating-point algorithm was evaluated. Afterward, the fixed-point algorithm was designed on a field-programmable gate array. The architecture was fully parallelized, and a maximum delay of 74 ns was obtained. The design tool used is a Xilinx system generator.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Taylor JW, Buizza R. Neural network load forecasting with weather ensemble predictions. Power Syst IEEE Trans. 2002;17(3):626–32.

    Article  Google Scholar 

  2. Lee R, Liu J. iJADE WeatherMAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network, systems, man, and cybernetics, part C: applications and reviews. IEEE Trans. 2004;34(3):369–77.

    Google Scholar 

  3. Sharma A, Manoria M. A weather forecasting system using concept of soft computing: a new approach. In: International conference on advanced computing and communications, 2006 (ADCOM 2006). p. 353–6, 20–23 Dec 2006.

  4. Yona A, Senjyu T, Saber AY, Funabashi T, Sekine H, Kim C-H. Application of neural network to one-day-ahead 24 hours generating power forecasting for photovoltaic system. In: International conference on intelligent systems applications to power systems, 2007 (ISAP 2007), p. 1–6, 5–8 Nov 2007.

  5. Wittmann M, Breitkreuz H, Schroedter-Homscheidt M, Eck M. Case studies on the use of solar irradiance forecast for optimized operation strategies of solar thermal power plants. Sel Topics Appl Earth Observ Rem Sens IEEE J. 2008;1(1):18–27.

    Article  Google Scholar 

  6. Christopher M. Bishop, pattern recognition and machine learning. Berlin: Springer; 2006.

    Google Scholar 

  7. Tosini M. Sistema basado en redes neuronales digitales aplicado a la predicción climática en ambientes con microclima controlado. JCS&T. 2007;7(1):114–5.

    Google Scholar 

  8. Peña D. Análisis de series temporales. Alianza Editorial; ISBN: 84-206-9128-3; España; 2010.

  9. Bautista E. Predicción de Múltiples Puntos de Series de Tiempo Utilizando Support Vector Machines. Computación y Sistemas. 7(3), ISSN 1405-5546.

  10. Trejos J. Presentación de las redes neuronales al análisis de datos. Costa Rica: Métodos Matemáticos aplicados a las Ciencias. VII y VIII Simposios; 1994.

    Google Scholar 

  11. Alonso JB, León J, Alonso I, Ferrer MA. Automatic detection of pathologies in the voice by HOS based parameters. EURASIP J Appl Signal Proc. 2001;4:275–84.

    Article  Google Scholar 

  12. Henríquez P, Alonso JB, Ferrer MA, Travieso CM, Godino-Llorente JI, Diaz-de-Maria, F. Characterization of healthy and pathological voice through measures based on nonlinear dynamics. In: IEEE transactions on audio, speech and language processing, vol. 17, no. 6, p. 1186–95, USA, ISSN: 1558-7916, August 2009.

  13. Tarade RS, Katti PK. A comparative analysis for wind speed prediction, 2011 international conference on energy, automation, and signal (ICEAS); 2011, p. 1–6. doi:10.1109/ICEAS.2011.6147167.

  14. Tarade RS, Dr. Prade, Katti K. Wind speed prediction using neural network & auto regressive integrated moving average (ARIMA). Paper presented during 6–7 June 2011, All India seminar on micro grids in Indian power system, arranged by, The Institution of Engineers (India), Pune.

  15. Dutta B, Mitra S. Better prediction of humidity using artificial neural network, 2011 In: Fourth international conference on the applications of digital information and web technologies (ICADIWT); 2011 p. 59–64, doi:10.1109/ICADIWT.2011.6041395.

  16. Vasak M, Gulin M, Vic JC, Nikolic D, Pavlovic T, Peric N. Meteorological and weather forecast data-based prediction of electrical power delivery of a photovoltaic panel in a stochastic framework. In: Proceedings of the 34th international convention MIPRO; 2011, p. 733–8.

  17. Zeng J, Qiao W. Short-term solar power prediction using an RBF neural network, 2011 In: IEEE power and energy society general meeting; 2011, p. 1–8, doi:10.1109/PES.2011.6039204.

  18. Badescu V. Modeling solar radiation at the earth surface. 1st ed. Berlin: Springer; 2008.

    Book  Google Scholar 

  19. Chen R, Kang E, Ji X, Yang J, Wang J. An hourly solar radiation model under actual weather and terrain conditions: a case study in Heihe river basin. Energy. 2007;32:1148–57.

    Article  CAS  Google Scholar 

  20. Almakaleh A. New method for energy prediction of solar energy collectors systems in Yemen. In: Proceedings of ISES solar world congress 2007: Solar energy and human settlement; 2009, p. 2607–11.

  21. Kasten F, Czeplak G. Solar and terrestrial radiation dependent on the amount and type of cloud. Sol Energy. 1980;24:177–89.

    Article  Google Scholar 

  22. Paolik C, Voyant C, Muselli M, Nivet M. Solar radiation forecast-ing using ad-hoc time series pre-processing and neural networks, In: Proceedings of 5th international conference on emerging intelligent computing technology and applications, Ulsan, South Korea; 2009, p. 898–907.

  23. Box G, Jenkins GM, Reinsel GC. Time series analysis: forecasting and control, 3rd edn. Prentice-Hall; 1994.

  24. Reikard G. Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol Energy. 2009;83(3):342–9.

    Article  CAS  Google Scholar 

  25. Torres JL, Garcia A, De Blas M, De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energy. 2005;79:65–77.

    Article  Google Scholar 

  26. Iqdour R, Zeroual A. A rule based fuzzy model for the prediction of daily solar radiation. In: Proceeding international conference on industrial technology, vol. 3. 2004. p. 1482–7.

  27. Gapizzi G, Bonanno F, Napoli C. A wavelet based prediction of wind and solar energy for long-term simulation of integrated generation systems. In: Proceedings of 2010 international symposium on power electronics, electrical drives, automation and motion (SPEEDAM 2010), p. 586–2, June, 2010.

  28. Ahhi A, Shamisi M, Jama M. Prediction of monthly average daily global radiation in Al Ain city—UAE using artificial neural networks. In: Proceedings of 4th Wseas international conference on renewable energy sources (RES 10), pp. 109–113, Kantaoui, Sousse, Tunisia, May 3–6 2010.

  29. Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW. The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw. 1990;1(4):296–8.

    Article  PubMed  CAS  Google Scholar 

  30. Matlab Neural Network Toolbox,, active on July 1st 2011.

  31. Colina E, Rivas F. Redes Neuronales Artificiales in Introducción a las Técnicas de Computación Inteligente. Jose Aguilar and Francklin Rivas Editors, Editorial Meritec; 2001.

  32. Maxfield C. The design Warrior’s Guide to FPGAs. Elsevier; 2004.

  33. Xilinx System Generator,, active on July 1st 2011.

  34. Matlab Simulink,, active on July 1st 2011.

  35. Xilinx ISE,, active on July 1st 2011.

  36. Palnitkar S. Verilog HDL. Prentice Hall; 1996.

  37. Volnei A. Pedroni: circuit design with VHDL. The MIT Press; 2004.

Download references


This work has been supported by the Spanish Government, in particular by “Agencia Española de Cooperación Internacional para el Desarrollo” under the research projects with references D/027406/09 for 2010, D/033858/10 for 2011 and A1/039531/11 for 2012.

Author information

Authors and Affiliations


Corresponding author

Correspondence to José L. Vásquez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vásquez, J.L., Pérez, S.T., Travieso, C.M. et al. Meteorological Prediction Implemented on Field-Programmable Gate Array. Cogn Comput 5, 551–557 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: