Cognitive Computation

, Volume 4, Issue 3, pp 320–331 | Cite as

Creativity and Autonomy in Swarm Intelligence Systems

  • Mohammad Majid al-Rifaie
  • John Mark Bishop
  • Suzanne Caines
Article

Abstract

This work introduces two swarm intelligence algorithms—one mimicking the behaviour of one species of ants (Leptothorax acervorum) foraging (a ‘stochastic diffusion search’, SDS) and the other algorithm mimicking the behaviour of birds flocking (a ‘particle swarm optimiser’, PSO)—and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploiting an artistic tension between the local behaviour of the ‘birds flocking’—as they seek to follow the input sketch—and the global behaviour of the ‘ants foraging’—as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putatve ‘creativity’ of this hybrid swarm system in the philosophical light of the ‘rhizome’ and Deleauze’s well-known ‘Orchid and Wasp’ metaphor.

Keywords

PSO SDS Autonomy Swarm intelligence Computational creativity 

References

  1. 1.
    al-Rifaie MM, Bishop M, Blackwell T. An investigation into the merger of stochastic diffusion search and particle swarm optimisation. In: GECCO ’11: Proceedings of the 2011 GECCO conference companion on genetic and evolutionary computation. New York, NY: ACM; 2011. p. 37–44.Google Scholar
  2. 2.
    Aupetit S, Bordeau V, Monmarche N, Slimane M, Venturini G. Interactive evolution of ant paintings. In: The 2003 congress on evolutionary computation, 2003 (CEC’03), vol 2. 2004. p. 1376–83.Google Scholar
  3. 3.
    Basch LGS. Nations unbound: transnational projects, postcolonial predicaments and deterritorialized nation-states, 1st ed. London: Routledge; 1993.Google Scholar
  4. 4.
    Bayazit OB, Lien JM, Amato NM. Roadmap-based flocking for complex environments. In: PG ’02: Proceedings of the 10th Pacific conference on computer graphics and applications. Washington, DC: IEEE Computer Society; 2002. p. 104.Google Scholar
  5. 5.
    Bishop J. Stochastic searching networks. In: Proceedings of 1st IEE conference on artificial neural networks, London, UK; 1989. p. 329–31.Google Scholar
  6. 6.
    Boden M. Creativity in a nutshell. Think. 2007;5(15):83–96.CrossRefGoogle Scholar
  7. 7.
    Boden M. Creativity and art: three roads to surprise. Oxford: Oxford University Press; 2010.Google Scholar
  8. 8.
    Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature. 2000;406:3942.CrossRefGoogle Scholar
  9. 9.
    Borgia G. Complex male display and female choice in the spotted bowerbird: specialized functions for different bower decorations. Anim Behav. 1995; 49:1291–301.CrossRefGoogle Scholar
  10. 10.
    Bown O. Generative and adaptive creativity. In: McCormack J, d’Inverno M, editors. In computers and creativity. Berlin: Springer; 2011.Google Scholar
  11. 11.
    Clark A. Natural-born cyborgs: minds, technologies, and the future of human intelligence. New York: Oxford University Press; 2003.Google Scholar
  12. 12.
    Deleuze G, Guattari F, Massumi B. A thousand plateaus. Minneapolis: University of Minnesota Press; 2004.Google Scholar
  13. 13.
    Dorin A, Korb K. Creativity refined. In: McCormack J, d’Inverno M, editors. In computers and creativity. Berlin: Springer; 2011.Google Scholar
  14. 14.
    Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, vol 43. New York, NY: IEEE; 1995.Google Scholar
  15. 15.
    Etzioni A, Ben-Barak A, Peron S, Durandy A. Ataxia-telangiectasia in twins presenting as autosomal recessive hyper-immunoglobulin m syndrome. IMAJ-RAMAT GAN. 2007; 9(5):406.Google Scholar
  16. 16.
    Galanter P. Computational aesthetic evaluation: past and future. In: McCormack J, d’Inverno M, editors. In computers and creativity. Berlin: Springer; 2011.Google Scholar
  17. 17.
    Greenfield G. Evolutionary methods for ant colony paintings. Appl Evol Comput Proc. 2005;3449:478–87.CrossRefGoogle Scholar
  18. 18.
    Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks. Washington, DC: American Association for the Advancement of Science; 1990.Google Scholar
  19. 19.
    Holldobler B, Wilson EO. The ants. Berlin: Springer; 1990.Google Scholar
  20. 20.
    Janson CH. Experimental evidence for spatial memory in foraging wild capuchin monkeys, cebus apella. Anim Behav. 1998; 55:1229–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol IV. Piscataway, NJ: IEEE Service Center; 1995. p. 1942–8.Google Scholar
  22. 22.
    Kennedy JF, Eberhart RC, Shi Y. Swarm intelligence. San Francisco, London: Morgan Kaufmann; 2001.Google Scholar
  23. 23.
    Levy S. Artificial life: a report from the frontier where computers meet biology. New York: Vintage Books; 1993.Google Scholar
  24. 24.
    Mataric M. Interaction and intelligent behavior. Ph.D. thesis, Department of Electrical, Electronics and Computer Engineering, MIT, USA; 1994.Google Scholar
  25. 25.
    McCorduck P. Aaron’s code: meta-art, artificial intelligence, and the work of Harold Cohen. New York: WH Freeman; 1991.Google Scholar
  26. 26.
    de Meyer K, Bishop JM, Nasuto SJ. Stochastic diffusion: using recruitment for search. In: McOwan P, Dautenhahn K, Nehaniv CL, editors. Evolvability and interaction: evolutionary substrates of communication, signalling, and perception in the dynamics of social complexity. Technical Report 393. 2003. p. 60–5.Google Scholar
  27. 27.
    de Meyer K, Nasuto S, Bishop J. Stochastic diffusion optimisation: the application of partial function evaluation and stochastic recruitment in swarm intelligence optimisation. In Abraham A, Grosam C, Ramos V, editors. Swarm intelligence and data mining, vol 2, Chapter 12. Springer; 2006.Google Scholar
  28. 28.
    Moglich M, Maschwitz U, Holldobler B. Tandem calling: a new kind of signal in ant communication. Science. 1974;186(4168):1046–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Monmarche N, Aupetit S, Bordeau V, Slimane M, Venturini G. Interactive evolution of ant paintings. In: McKay B, et al., editors. 2003 Congress on evolutionary computation, vol 2. IEEE Press; 2003. p. 1376–83.Google Scholar
  30. 30.
    Moura L, Ramos V. Swarm paintings—nonhuman art. ARCHITOPIA book, art, architecture and science. 2007. p. 5–24.Google Scholar
  31. 31.
    Myatt DR, Bishop JM, Nasuto SJ. Minimum stable convergence criteria for stochastic diffusion search. Electron Lett. 2004; 40(2):112–3.CrossRefGoogle Scholar
  32. 32.
    Nagel T. What is it like to be a bat? Philos Rev. 1974; 83(4):435–50.CrossRefGoogle Scholar
  33. 33.
    Nasuto SJ. Resource allocation analysis of the stochastic diffusion search. Ph.D. thesis, University of Reading, Reading, UK; 1999.Google Scholar
  34. 34.
    Nasuto SJ, Bishop JM. Convergence analysis of stochastic diffusion search. Parallel Algorithms Appl. 1999; 14(2):89–107.Google Scholar
  35. 35.
    Nasuto SJ, Bishop JM, Lauria S. Time complexity of stochastic diffusion search. In: Neural computation (NC98); 1998.Google Scholar
  36. 36.
    O’Sullivan S. et al. Art encounters Deleuze and Guattari: thought beyond representation. Basingstoke: Palgrave Macmillan; 2006.Google Scholar
  37. 37.
    Restany P. Hundertwasser: the painter-king with the five skins: the power of art. Los Angeles, CA: Taschen America Llc; 2001.Google Scholar
  38. 38.
    Reynolds CW. Flocks, herds, and schools: a distributed behavioral model. Comput Graph. 1987; 21(4):25–34.CrossRefGoogle Scholar
  39. 39.
    Richards ME, Caines S. Unconventional encounters. Perform Res J. 2012 (submitted).Google Scholar
  40. 40.
    Rothenberg A, Hausman C. The creativity question. Durham, NC: Duke University Press Books; 1976.Google Scholar
  41. 41.
    Saxe JG, Lathen D, Chief B. The blind man and the elephant. The Poems of John Godfrey Saxe; 1882.Google Scholar
  42. 42.
    Schermerhorn P, Scheutz M. The impact of communication and memory in hive-based foraging agents. In: IEEE symposium on artificial life, 2009 (ALife’09). 2009. p. 29–36.Google Scholar
  43. 43.
    Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: Lecture notes in computer science. p. 591–600.Google Scholar
  44. 44.
    Sims K. Artificial evolution for computer graphics. Comput Graph. 1991; 25(4):319–28.CrossRefGoogle Scholar
  45. 45.
    Sims K. Evolving 3d morphology and behavior by competition. Artif Life. 1994; 1(4):353–72.CrossRefGoogle Scholar
  46. 46.
    Sternberg R. The nature of creativity: contemporary psychological perspectives. New York: Cambridge University Press; 1988.Google Scholar
  47. 47.
    Taylor C. 4 Various approaches to and definitions of creativity. The nature of creativity: Contemporary psychological perspectives. 1988. p. 99.Google Scholar
  48. 48.
    Urbano P. Playing in the pheromone playground: experiences in swarm painting. Appl Evol Comput. 2005; 3449:527–32.Google Scholar
  49. 49.
    Urbano P. Consensual paintings. Appl Evol Comput. 2006; 3907:622–32.Google Scholar
  50. 50.
    Watanabe S. Pigeons can discriminate “good” and “bad” paintings by children. Anim Cogn. 2009; 13(1):75–85.Google Scholar
  51. 51.
    Weesatchanam AM. Are paintings by elephants really art? The Elephant Art Gallery. 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad Majid al-Rifaie
    • 1
  • John Mark Bishop
    • 1
  • Suzanne Caines
    • 2
  1. 1.Department of Computing, GoldsmithsUniversity of LondonLondonUK
  2. 2.Department of Art, GoldsmithsUniversity of LondonLondonUK

Personalised recommendations