Comments on Aur’s “From Neuroelectrodynamics to Thinking Machines”

This is a preview of subscription content, access via your institution.


  1. 1.

    Aur D. From neuroelectrodynamics to thinking machines. Cogn Comput. 2011. doi:10.1007/s12559-011-9106-3.

    Google Scholar 

  2. 2.

    Arnold VI. Mathematical methods of classical mechanics. Berlin: Springer; 1987.

    Google Scholar 

  3. 3.

    Brunel N. Modeling point neurons: from Hodgkin-Huxley to integrate-and-fire. In: De Schutter E, editor. Computational modeling methods for neuroscientists. Cambridge: MIT press; 2010.

    Google Scholar 

  4. 4.

    Willems JC. Dissipative dynamical systems. Eur J Control. 2007;13:134–51.

    Article  Google Scholar 

  5. 5.

    Nicolis G, Prigogine I. Self-organization in non-equilibrium systems. London: Wiley; 1977.

    Google Scholar 

  6. 6.

    Lichtenberg AJ, Lieberman MA. Regular and chaotic dynamics. Berlin: Springer; 1992.

    Google Scholar 

  7. 7.

    Lorenz EJ. Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci. 1969;26(4):636–46.

    Article  Google Scholar 

  8. 8.

    Murray JD. Mathematical biology: I. An introduction. 3rd ed. Berlin: Springer; 2007. p. 239–44.

    Google Scholar 

  9. 9.

    Koch C. Biophysics of computation. Information processing in single neurons. Oxford: Oxford University Press; 1999.

    Google Scholar 

  10. 10.

    Dan Y, Poo M. Spike timing-dependent plasticity of neural circuits. Neuron. 2004;44:23–30.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Wehr M, Laurent G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature. 1996;384(6605):162–6.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Peirce CS. Prolegomena to an apology for pragmaticism. In: Hartshorne C, Weiss P, editors. Collected papers of Charles Sanders Peirce, vol. III/IV. Cambridge: The Beknap Press of Harvard University Press; 1932.

    Google Scholar 

  13. 13.

    Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190:539–40.

    Article  Google Scholar 

  14. 14.

    Hagiwara S, Morita H. Coding mechanisms of electroreceptor fibers in some electric fish. J Neurophysiol. 1963;26:551–67.

    PubMed  CAS  Google Scholar 

  15. 15.

    Rose JE, Brugge JF, Anderson DJ, Hind JE. Phase-locked resonse to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol. 1967;30:769–93.

    PubMed  CAS  Google Scholar 

  16. 16.

    Bray D. Protein molecules as computational elements in living cells. Nature. 1995;376:307–12.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bray D, Levin MD, Morton-Firth CJ. Receptor clustering as a cellular mechanism to control sensitivity. Nature. 1998;393(6680):85–8.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Bray D. Wetware: a computer in every living cell. New Haven, CT: Yale University Press; 2009.

    Google Scholar 

  19. 19.

    Alon U. An introduction to systems biology: design principles of biologcal circuits. London: Chapman and Hall; 2006.

    Google Scholar 

  20. 20.

    Vaadia E, Aertsen A. Coding and computation in the cortex: single-neuron activity and cooperative phenomena. In: Aertsen A, Braitenberg V, editors. Information processing in the cortex. Berlin: Springer; 1992. p. 81–121.

    Google Scholar 

  21. 21.

    VanRullen R, Guyonneau R, Thorpe S. Spike times make sense. Trends Neurosci. 2005;28(1):1–4.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Strehler BL, Lestienne R. Evidence on precise time-coded symbols and memory of patterns in monkey cortical neuronal spike trains. Proc Natl Acad Sci USA. 1986;83:9812–6.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Laurent G, Davidowitz H. Encoding of olfactory information with oscillating neural assemblies. Science. 1994;265:1872–5.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Freeman W, Schneider W. Changes in spatial patterns of rabbit olfactoory EEG with conditioning to odors. Psychophysiology. 1982;19(1):44–56.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Langner G. Periodicity coding in the auditory system. Hear Res. 1992;60:115–42.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.

    PubMed  Article  Google Scholar 

  27. 27.

    Fyhn M, Molden S, Witter M, Moser E, Moser M-B. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–64.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Moser E, Kropff E, Moser M. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jaime Gomez-Ramirez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomez-Ramirez, J. Comments on Aur’s “From Neuroelectrodynamics to Thinking Machines”. Cogn Comput 4, 563–565 (2012).

Download citation


  • Hamiltonian System
  • Dissipative System
  • Hide Information
  • Neural Code
  • Temporal Code