Skip to main content

Advertisement

Log in

Computational Algorithms Derived from Multiple Scales of Neocortical Processing

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

A statistical mechanics of neocortical interactions of columnar activity and the vector potential of minicolumnar electromagnetic activity provide a context to explore neocortical information processes and influences on cognitive processing at multiple scales, i.e., mesoscopic (columnar scales), macroscopic (mesoscopic influences at regional scales), and microscopic (mesoscopic influences of ions affecting interactions between and among neurons and astrocytes). Even within this confined context, a case has been made that it should not be expected that the proposed Holy Grail of neuroscience, i.e., to ultimately explain all brain processing in terms of a nonlinear science at molecular scales, is at all realistic. As with many Crusades for some truths, other truths can be trampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander J, Fuss B, Colello R. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2006;2(2):93–103.

    Article  PubMed  Google Scholar 

  2. Amzica F, Massimini M. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cerbral Cortex. 2002;12(10):1101–1113.

    Article  Google Scholar 

  3. Anastassiou C, Perin R, Markram H, Koch C. Ephaptic coupling of cortical neurons. Nat Neurosci. 2011;14:217–223.

    Article  PubMed  CAS  Google Scholar 

  4. Arbib M, Amari SI. Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). J Theor Biol. 1985;112:123–155.

    Article  PubMed  CAS  Google Scholar 

  5. Balduzzi D, Tononi G. Qualia: the geometry of integrated information. PLoS Comput Biol. 2009;5(8):1–24.

    Article  Google Scholar 

  6. Banaclocha M. Magnetic storage of information in the human cerebral cortex: a hypothesis for memory. Int J Neurosci. 2005;115(3):329–337.

    Article  Google Scholar 

  7. Banaclocha M. Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res Bull. 2007;73:21–27.

    Article  PubMed  Google Scholar 

  8. Banaclocha M, Banaclocha H. Spontaneous neocortical activity and cognitive functions: a neuron-astroglial bio-magnetic and self-organized process. NeuroQuantology. 2010;8(2):191–199.

    Google Scholar 

  9. Banaclocha M, Bóokkon I, Banaclocha H. Long-term memory in brain magnetite. Med Hypotheses. 2010;74(2):254–257.

    Article  PubMed  Google Scholar 

  10. Bellinger S. Modeling calcium wave oscillations in astrocytes. Neurocomputing. 2005;65(66):843–850.

    Article  Google Scholar 

  11. Buxhoeveden D, Casanova M. The minicolumn hypothesis in neuroscience. Brain. 2002;125(5):935–951. URL: http://tinyurl.com/bc2002brain.

    Google Scholar 

  12. Colombo J, Reisin H, Jones M, Bentham C. Development of interlaminar astroglial processes in the cerebral cortex of control and down’s syndrome human cases. Exp Neurol. 2005;193:207–217.

    Article  PubMed  Google Scholar 

  13. Ericsson K, Chase W. Exceptional memory. Am Scient. 1982;70:607–615.

    CAS  Google Scholar 

  14. Feynman R, Leighton R, Sands M. Chapter 15: The vector potential. In: The Feynman lectures on physics, vol II. Reading: Addison-Wesley. 1964; p. 1–16.

  15. Georgiev D. Electric and magnetic fields inside neurons and their impact upon the cytoskeletal microtubules. Tech. Rep. Cogprints Report, Cogprints, U. Southampton, UK, 2003. http://cogprints.org/3190/.

  16. Goldberg M, De Pittá M, Volman V, Berry H, Ben-Jacob E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol. 2010;6(8):1–14.

    Article  Google Scholar 

  17. Gordon G, Iremonger K, Kantevari S, Ellis-Davies G, MacVicar B, Bains J. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron. 2009;64:391–403.

    Article  PubMed  CAS  Google Scholar 

  18. Graham R. Covariant formulation of non-equilibrium statistical thermodynamics. Zeitschrift für Physik. 1977;B26:397–405.

    Google Scholar 

  19. Graham R. Path-integral methods in nonequilibrium thermodynamics and statistics. In: Garrido L, Seglar P, Shepherd P, editors. Stochastic processes in nonequilibrium systems. New York: Springer; 1978. p. 82–138.

    Chapter  Google Scholar 

  20. Grossberg S. The quantized geometry of visual space: the coherent computation of depth, form, and lightness. Behav Brain Sci. 1983;6:625–692.

    Article  Google Scholar 

  21. Hagan S, Hameroff R, Tuszyński J. Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E. 2002;65(061901):1–11.

    Google Scholar 

  22. Ingber L. Towards a unified brain theory. J Soc Biol Struct. 1981;4:211–224. URL: http://www.ingber.com/smni81_unified.pdf.

    Google Scholar 

  23. Ingber L. Statistical mechanics of neocortical interactions. i. basic formulation. Phys D. 1982;5:83–107. URL: http://www.ingber.com/smni82_basic.pdf.

  24. Ingber L. Statistical mechanics of neocortical interactions. dynamics of synaptic modification. Phys Rev A. 1983;28:395–416. URL: http://www.ingber.com/smni83_dynamics.pdf.

    Google Scholar 

  25. Ingber L. Statistical mechanics of neocortical interactions. derivation of short-term-memory capacity. Phys Rev A. 1984;29:3346–3358. URL: http://www.ingber.com/smni84_stm.pdf.

  26. Ingber L. Statistical mechanics of neocortical interactions. EEG dispersion relations. IEEE Trans Biomed Eng. 1985a;32:91–94. URL: http://www.ingber.com/smni85_eeg.pdf.

  27. Ingber L. Statistical mechanics of neocortical interactions: Stability and duration of the 7+-2 rule of short-term-memory capacity. Phys Rev A. 1985b;31:1183–1186. URL: http://www.ingber.com/smni85_stm.pdf.

  28. Ingber L. Statistical mechanics algorithm for response to targets (SMART). In: Workshop on uncertainty and probability in artificial intelligence: UC Los Angeles, 14–16 August 1985, American Association for Artificial Intelligence, Menlo Park, CA; 1985c. p. 258–264. URL: http://www.ingber.com/combat85_smart.pdf.

  29. Ingber L. Statistical mechanics of neocortical interactions. Bull Am Phys Soc. 1986;31:868.

    Google Scholar 

  30. Ingber L. Statistical mechanics of neocortical interactions: a scaling paradigm applied to electroencephalography. Phys Rev A. 1991;44(6):4017–4060. URL: http://www.ingber.com/smni91_eeg.pdf.

    Google Scholar 

  31. Ingber L. Generic mesoscopic neural networks based on statistical mechanics of neocortical interactions. Phys Rev A. 1992;45(4):R2183–R2186. URL: http://www.ingber.com/smni92_mnn.pdf.

    Google Scholar 

  32. Ingber L. Adaptive simulated annealing (ASA). Tech. Rep. Global optimization C-code, Caltech Alumni Association, Pasadena, CA; 1993. URL: http://www.ingber.com/#ASA-CODE.

  33. Ingber L. Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory. Phys Rev E. 1994;49(5B):4652–4664. URL: http://www.ingber.com/smni94_stm.pdf.

  34. Ingber L. Statistical mechanics of multiple scales of neocortical interactions. In: Nunez P, editor. Neocortical dynamics and human EEG rhythms. New York, NY: Oxford University Press; 1995a. p. 628–681. ISBN 0-19-505728-7. URL: http://www.ingber.com/smni95_scales.pdf.

  35. Ingber L. Statistical mechanics of neocortical interactions: constraints on 40 hz models of short-term memory. Phys Rev E. 1995b;52(4):4561–4563. URL: http://www.ingber.com/smni95_stm40hz.pdf.

  36. Ingber L. Statistical mechanics of neocortical interactions: multiple scales of EEG. In: Dasheiff R, Vincent D, editors. Frontier science in EEG: continuous waveform analysis (Electroencephalography Clinical Neurophysiology Suppl. 45). Amsterdam: Elsevier; 1996a. p. 79–112. Invited talk to Frontier Science in EEG Symposium, New Orleans, 9 Oct 1993. ISBN 0-444-82429-4. URL: http://www.ingber.com/smni96_eeg.pdf.

  37. Ingber L. Nonlinear nonequilibrium nonquantum nonchaotic statistical mechanics of neocortical interactions. Behav Brain Sci. 1996b;19(2):300–301. Invited commentary on Dynamics of the brain at global and microscopic scales: Neural networks and the EEG, by J.J. Wright and D.T.J. Liley. URL: http://www.ingber.com/smni96_nonlinear.pdf.

  38. Ingber L. Statistical mechanics of neocortical interactions: applications of canonical momenta indicators to electroencephalography. Phys Rev E. 1997;55(4):4578–4593. URL: http://www.ingber.com/smni97_cmi.pdf.

  39. Ingber L. Statistical mechanics of neocortical interactions: training and testing canonical momenta indicators of EEG. Math Comput Model. 1998;27(3):33–64. URL: http://www.ingber.com/smni98_cmi_test.pdf.

  40. Ingber L. High-resolution path-integral development of financial options. Physica A. 2000;283(3–4):529–558. URL: http://www.ingber.com/markets00_highres.pdf.

  41. Ingber L. Trading in risk dimensions (TRD). Tech. Rep. Report 2005:TRD, Lester Ingber Research, Ashland, OR, 2005. URL: http://www.ingber.com/markets05_trd.pdf.

  42. Ingber L. Ideas by statistical mechanics (ISM). Tech. Rep. Report 2006:ISM, Lester Ingber Research, Ashland, OR, 2006. URL: http://www.ingber.com/smni06_ism.pdf.

  43. Ingber L (2007) Ideas by statistical mechanics (ISM). J Integr Syst Design Process Sci 11(3):31–54, Special Issue: Biologically Inspired Computing.

    Google Scholar 

  44. Ingber L. AI and ideas by statistical mechanics (ISM). In: Rabuñal J, Dorado J, Pazos A, editors. Encyclopedia of artificial intelligence, information science reference, New York; 2008. p. 58–64, ISBN 978-1-59904-849-9.

  45. Ingber L. Statistical mechanics of neocortical interactions: Columnar EEG. Tech. Rep. Report 2009:CEEG, Lester Ingber Research, Ashland, OR, 2009a. URL: http://www.ingber.com/smni09_columnar_eeg.pdf.

  46. Ingber L. Statistical mechanics of neocortical interactions: nonlinear columnar electroencephalography. NeuroQuantol J. 2009b;7(4):500–529. URL: http://www.ingber.com/smni09_nonlin_column_eeg.pdf.

  47. Ingber L. Columnar EEG magnetic influences on molecular development of short-term memory. In: Gotsiridze-Columbus N, editor. Short-term memory: new research, Nova, Hauppauge, NY, 2012; p. (to be published), Invited Paper.

  48. Ingber L, Nunez P. Multiple scales of statistical physics of neocortex: application to electroencephalography. Math Comput Model. 1990;13(7):83–95.

    Article  Google Scholar 

  49. Ingber L, Nunez P. Statistical mechanics of neocortical interactions: high resolution path-integral calculation of short-term memory. Phys Rev E. 1995;51(5):5074–5083. URL: http://www.ingber.com/smni95_stm.pdf.

  50. Ingber L, Nunez P. Neocortical dynamics at multiple scales: Eeg standing waves, statistical mechanics, and physical analogs. Math Biosci. 2010;229:160–173. doi:10.1016/j.mbs.2010.12.003. http://www.ingber.com/smni10_multiple_scales.pdf.

  51. Ingber L, Fujio H, Wehner M. Mathematical comparison of combat computer models to exercise data. Math Comput Model. 1991;15(1):65–90, URL: http://www.ingber.com/combat91_data.pdf.

  52. Ingber L, Chen C, Mondescu R, Muzzall D, Renedo M. Probability tree algorithm for general diffusion processes. Phys Rev E. 2001;64(5):056,702–056,707. URL: http://www.ingber.com/path01_pathtree.pdf.

    Google Scholar 

  53. Irimia A, Swinney K, Wikswo J. Partial independence of bioelectric and biomagnetic field and its implications for encephalography and cardiography. Phys Rev E. 2009;79(051908):1–13.

    Google Scholar 

  54. Jackson J. Classical electrodynamics. New York: Wiley. 1962.

    Google Scholar 

  55. Jirsa V, Haken H. Field theory of electromagnetic brain activity. Phys Rev Lett. 1996;77(5):960–963.

    Article  PubMed  CAS  Google Scholar 

  56. Johnsen S, Lohmann K. Magnetoreception in animals. Phys Today. 2008;61:29–35.

    Article  CAS  Google Scholar 

  57. Kominis I. Zeno is pro darwin: quantum zeno effect suppresses the dependence of radical-ion-pair reaction yields on exchange and dipolar interactions. Tech. Rep. arXiv:0908.0763v2 [quant-ph], University of Crete, Greece. 2009.

  58. Langouche F, Roekaerts D, Tirapegui E. Discretization problems of functional integrals in phase space. Phys Rev D. 1979;20:419–432.

    Article  Google Scholar 

  59. Langouche F, Roekaerts D, Tirapegui E. Functional integration and semiclassical expansions. Dordrecht: Reidel; 1982.

    Google Scholar 

  60. McFadden J. Conscious electromagnetic field theory. NeuroQuantology. 2007;5(3):262–270.

    Google Scholar 

  61. Miller G. The magical number seven, plus or minus two. Psychol Rev. 1956;63:81–97.

    Article  PubMed  CAS  Google Scholar 

  62. Moore C, Cao R. The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol. 2008;99:2035–2047.

    Article  PubMed  Google Scholar 

  63. Mountcastle V. An organizing principle for cerebral function: The unit module and the distributed system. In: Edelman G, Mountcastle V, editors. The mindful brain. Cambridge: Massachusetts Institute of Technology. 1978; p. 7–50.

    Google Scholar 

  64. Mountcastle V, Andersen R, Motter B. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 1981;1:1218–1235.

    PubMed  CAS  Google Scholar 

  65. Murakami S, Okada Y. Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol. 2006;575(3):925–936.

    Article  PubMed  CAS  Google Scholar 

  66. Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y. Molecular communication through gap junction channels: system design, experiments and modeling. In: Proceedings 2nd International Conference on Bio-Insprired Models of Network, Information, and Computing Systems, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Budapest, Hungary; 2007.p. 139–146.

  67. Naruse Y, Matani A, Miyawaki Y, Okada M. Influence of coherence between multiple cortical columns on alpha rhythm: a computational modeling study. Human Brain Mapp. 2009;31(5):703–715.

    Article  Google Scholar 

  68. Nunez P. Electric fields of the brain: the neurophysics of EEG. London: Oxford University Press; 1981.

    Google Scholar 

  69. Nunez P. Generation of human EEG rhythms by a combination of long and short-range neocortical interactions. Brain Topogr. 1989;1:199–215.

    Article  PubMed  CAS  Google Scholar 

  70. Nunez P. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995.

    Google Scholar 

  71. Nunez P, Srinivasan R. Electric fields of the brain: the neurophysics of EEG, 2nd Ed. London: Oxford University Press; 2006.

    Book  Google Scholar 

  72. Oberheim N, Takano T, Han X, He W, Lin J, Wang F, Xu Q, Wyatt J, Pilcher W, Ojemann J, Ransom B, Goldman S, Nedergaard M. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–3287.

    Article  PubMed  CAS  Google Scholar 

  73. Pereira A Jr, FURL:an F. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J Biol Phys. 2009;35(4):465–480.

    Article  PubMed  Google Scholar 

  74. Pereira A Jr, FURL:an F. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol. 2010;92:405–420.

    Article  PubMed  Google Scholar 

  75. Postnov D, Koreshkov R, Brazhe N, Brazhe A, Sosnovtseva O. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys. 2009;35:425–445.

    Article  PubMed  CAS  Google Scholar 

  76. Rabinovich M, Varona P, Selverston A, Arbaranel H. Dynamical principles in neuroscience. Rev Modern Phys. 2006;78(4):1213–1265.

    Article  Google Scholar 

  77. Rakic P. Confusing cortical columns. Proc Nat Acad Sci. 2008;105(34):12,099–12,100. URL: http://www.pnas.org/content/105/34/12099.full.

  78. Reisin H, Colombo J. Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Mol Neurobiol. 2002;22(5/6):633–644.

    Article  PubMed  CAS  Google Scholar 

  79. Rodgers C, Hore P (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Nat Acad Sci. 2009;106(2):353–360.

    Article  PubMed  CAS  Google Scholar 

  80. Scemes E, Suadicani S, Spray D. Intercellular calcium wave communication via gap junction dependent and independent mechanisms. In: Current Topics in Membranes, vol 49. New York: Academic Press; 2000. p. 145–173

  81. Schipke C, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte ca2+ waves trigger responses in microglial cells in brain slices. FASEB J. 2002; 16:255–257.

    PubMed  CAS  Google Scholar 

  82. Solov’yov I, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J. 2009;96(12):4804–4813.

    Article  PubMed  Google Scholar 

  83. Tollaksen J, Aharonov Y, Casher A, Kaufherr T, Nussinov S (2010) Quantum interference experiments, modular variables and weak measurements. New J Phys. 2010;12(013023):1–29.

    Google Scholar 

  84. Zhang G, Simon H. Stm capacity for chinese words and idioms: Chunking and acoustical loop hypotheses. Memory Cogn. 1985;13:193–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Alfredo Pereira Jr and Marcos Banaclocha for several discussions and for references to relevant literature on astrocyte processes. I thank Paul Nunez for several discussions on electrical and magnetic fields in neocortex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester Ingber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingber, L. Computational Algorithms Derived from Multiple Scales of Neocortical Processing. Cogn Comput 4, 38–50 (2012). https://doi.org/10.1007/s12559-011-9105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-011-9105-4

Keywords

Navigation