Skip to main content
Log in

Foveal Attention and Inhibition of Return: A Model for the Generation of Perceptual Scan Paths

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

A neurobiological model for object-based visual attention of the ventral visual pathway and its mathematical formulation is presented. The attention matrix comprises the pulvinar for attentional selection, the superior colliculus for the selection of a saccade target, the frontal eye field as a working memory map for inhibition of return, and the posterior parietal cortex as a spatial map for representing locations in a head-centered coordinate frame. The model is applied to covert attentive picture perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. James W. The principles of psychology, 1. New York: Henry Holt; 1890.

    Book  Google Scholar 

  2. Broadbent DE. Perception and communication. London: Pergamon Press;1958.

    Book  Google Scholar 

  3. Deutsch JA, Deutsch D. Attention: some theoretical considerations. Psychol Rev. 1963;70:80–90.

    Article  PubMed  CAS  Google Scholar 

  4. Neisser U. Cognitive psychology. New York: Appleton Century Crofts; 1967.

    Google Scholar 

  5. Yarbus AL. Eye movements and vision. New York: Plenum; 1967.

    Google Scholar 

  6. Noton D, Stark L. Eye movements and visual perception. Sci Am. 1971;34–43.

  7. Stark L, Ellis S. Scanpaths revisited: cognitive models for direct active looking. In: Fisher D, Monty R, Senders J, editors. Eye movements: cognition and visual perception. Hillsdale: Erlbaum; 1981. p. 193–226.

    Google Scholar 

  8. Privitera CM, Stark LW. Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Trans Pattern Anal Mach Intell. 2000;22(2):970–82.

    Article  Google Scholar 

  9. Treisman A. Perceptual grouping and attention in visual search for features and for objects. J Exp Psych: Hum Percept Perf 1982;8(2):194–214.

    Article  CAS  Google Scholar 

  10. Treisman A, Paterson R. Emergent features, attention, and object perception. J Exp Psych: Hum Percept Perf. 1984;10(1):12–31.

    Article  CAS  Google Scholar 

  11. Julesz B, Bergen JR. Textons, the fundamental lements in preattentive vision and the perception of textures. Bell Syst Tech J. 1983;62:1619–44.

    Google Scholar 

  12. Duncan J, Humphreys GW. Visual search and stimulus similarity. Psychol Rev. 1989;3:433–58.

    Article  Google Scholar 

  13. Treisman A. Features and objects: the fourteenth Bartlett memorial lecture. Quart J Exp Psychol. 1988;40A(2):201–37.

    Google Scholar 

  14. Duncan J. Selective attention and the organization of visual information. J Exp Psych: General. 1984;113(4):501–17.

    Article  CAS  Google Scholar 

  15. Wurtz R, Goldberg M, Robinson D. Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Progr Psychobiol Physiol Psych. 1980;9:43–83.

    Google Scholar 

  16. Lee C, Rohrer WH, Sparks DL. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature. 1988;332:357–60.

    Article  PubMed  CAS  Google Scholar 

  17. Sparks DL, Mays LE. Signal transformations required for the generation of saccadic eye movements. Annu Rev Neurosci. 1990;13:309–36.

    Article  PubMed  CAS  Google Scholar 

  18. McIlwain JT. Distributed spatial coding in the superior colliculus: a review. Vis Neurosci. 1991;6:3–13.

    Article  PubMed  CAS  Google Scholar 

  19. Munoz D, Pélisson D, Guitton D. Movement of neural activity on the superior colliculus motor map during gaze shifts. Science. 1991;251:1358–60.

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg M, Bushnell M. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol. 1982;46:773–87.

    Google Scholar 

  21. Schall JD, Hanes DP. Neural mechanisms of selection and control of visually guided eye movements. Neural Netw. 1998;11:1241–51.

    Article  PubMed  Google Scholar 

  22. Andersen R, Essick G, Siegel R. The encoding of spatial location by posterior parietal neurons. Science. 1985;230:456–58.

    Article  PubMed  CAS  Google Scholar 

  23. Duhamel JR, Colby CL, Goldberg ME. The updating of the representation of visual space in parietal cortex by intended eye movements. Science. 1992;255:90–2.

    Article  PubMed  CAS  Google Scholar 

  24. Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.

    Article  Google Scholar 

  25. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen RA. The neuropsychology of attention. New York: Plenum Press; 1993.

    Google Scholar 

  27. Posner M, Petersen S. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.

    Article  PubMed  CAS  Google Scholar 

  28. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991;11(8):2383–402.

    PubMed  CAS  Google Scholar 

  29. Robinson DL, Petersen S. The neurobiology of attention. In: LeDoux J, Hirst W, editors. Mind and brain: dialogues in cognitive neuroscience. Cambridge: Cambridge University Press; 1986. p. 142–71.

    Google Scholar 

  30. Petersen S, Robinson DL, Morris J. Contributions of the pulvinar to visual spatial attention. Neuropsychology. 1987;25:97–105.

    Article  CAS  Google Scholar 

  31. Moran T, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229:782–4.

    Article  PubMed  CAS  Google Scholar 

  32. Haenny PE, Schiller PH. State dependent activity in monkey visual cortex; I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res. 1988;69:225–44.

    Article  PubMed  CAS  Google Scholar 

  33. Motter BC. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol. 1993;70(3):909–19.

    PubMed  CAS  Google Scholar 

  34. Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci. 2000;23:315–41.

    Article  PubMed  CAS  Google Scholar 

  35. Van Opstal AJ, Van Gisbergen JAM. A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biol Cybern. 1989;60:171–83.

    PubMed  CAS  Google Scholar 

  36. Mozer MC, Sitton M. Computational modeling of spatial attention. In: Pashler H, editor. Attention. Hove: Psychology Press; 1998. p. 341–93.

    Google Scholar 

  37. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4:219–27.

    PubMed  CAS  Google Scholar 

  38. Grossberg S. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw. 1988;1:17–61.

    Article  Google Scholar 

  39. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc Nat Acad Sci. 1984;81:4586–90.

    Article  PubMed  CAS  Google Scholar 

  40. Tipper SP. The negative priming effect: inhibitory priming by ignored bjects. Quart J Exp Psychol. 1985;37A:571–90.

    Google Scholar 

  41. Klein R. Inhibitory tagging system facilitates visual search. Nature. 1988;334:430–1.

    Article  PubMed  CAS  Google Scholar 

  42. Gibson BS, Egeth H. Inhibition of return to object-based and environment-based locations. Percept Psychophys. 1994;55(3):323–39.

    Article  PubMed  CAS  Google Scholar 

  43. Posner M, Rafal R, Choate L, Vaughan J. Inhibition of return: neural basis and function. Cognit Neuropsychol. 1985;2:211–28.

    Article  Google Scholar 

  44. Rafal R, Calabresi P, Brennan C, Sciolto T. Saccade preparation inhibits reorienting to recently attended locations. J Exp Psych: Hum Percept Perf. 1989;15:673–85.

    Article  CAS  Google Scholar 

  45. Fellenz WA. A sequential model for attentive object selection. In: Proceedings of the 39th IWK. vol. 2. TU Ilmenau; 1994. p. 109–16.

  46. Fellenz WA. Ein neuromorphes System für die datengetriebene Szenenanalyse. Düsseldorf: VDI Verlag; 1997.

    Google Scholar 

  47. Colby CL, Goldberg ME. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319–49.

    Article  PubMed  CAS  Google Scholar 

  48. Matelli M, Luppino G. Parietofrontal circuits for action and space perception in the macaque monkey. NeuroImage. 2001;14:S27–32.

    Article  PubMed  CAS  Google Scholar 

  49. Bisley JW, Goldberg ME. Neuronal activity in the lateral intraparietal area and spatial attention. Science. 2003;299:81–6.

    Article  PubMed  CAS  Google Scholar 

  50. Zipser D, Andersen R. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature. 1988;331:679–84.

    Article  PubMed  CAS  Google Scholar 

  51. Braitenberg V. Vehicles: experiments in synthetic psychology, Chap. 12. Cambridge: MIT Press; 1984.

    Google Scholar 

  52. Sillito AM, Jones HE. The role of the thalamic reticular nucleus in visual processing. Thalamus Relat Syst. 2008;4(1):1–12.

    Google Scholar 

  53. Crabtree JW, Isaac JTR. New intrathalamic pathways allowing modality-related and cross- modality switching in the dorsal thalamus. J Neurosci. 2002;22(3):8754–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried A. Fellenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellenz, W.A. Foveal Attention and Inhibition of Return: A Model for the Generation of Perceptual Scan Paths. Cogn Comput 3, 303–310 (2011). https://doi.org/10.1007/s12559-010-9067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9067-y

Keywords

Navigation