Skip to main content
Log in

The Role of Attention in the Context of Associative Memory

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

We model the mechanism of the retrieval of associations from the associative memory during visual scene analysis. During the analysis of the visual scene, the retrieval phase of the associative memory is divided into two stages: the attention stage and the binding stage. In the attention stage, an attention window selects patterns representing objects for further access. In the binding stage, the selected patterns form an address vector. The behavior of the model is demonstrated by theoretical analysis and empirical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allport A. Visual attention. In: Posner M, editor. Foundations of cognitive science. Cambridge: The MIT Press; 1989. p. 631–82.

    Google Scholar 

  2. Anderson JA. An introduction to neural networks. Cambridge: The MIT Press; 1995.

    Google Scholar 

  3. Braitenberg V, Schüz A. The anatomy of the cortex. Statistics and geometry. New York: Springer; 1991.

    Google Scholar 

  4. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron 2008;58:306–24.

    Article  PubMed  CAS  Google Scholar 

  5. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. In: Baars BJ, Banks WP, Newman J, editors. Essential sources in the scientific study of consciousness. Cambridge: MIT Press; 2003.

    Google Scholar 

  6. Damasio AR, Damasio H. Cortical systems for retrieval of concrete knowledge: the convergence zone farmework. In: Koch C, Davis JL, editors. Large-scale neural theories of the brain, chap. 3. Cambridge: The MIT Press; 1994. p. 61–74.

    Google Scholar 

  7. Downing C, Oinker S. The spatial structure of visual attention. In: Posner M, Marin O, editors. Attention and performance XI. Hillsdale, NJ: Erlbaum; 1985. p. 171–87.

    Google Scholar 

  8. Fransén E. Biophysical simulation of cortical associative memory. PhD thesis, Stockhokms Universitet, Department of Numerical Analysis and Computing Science Royal Institute of Technology, S-100 44 Stockholm, Sweden; 1996.

  9. Gary C, Singer W. Stimulus specific neural oscillations in orientation columns of cat visual cortex. PNAS 1989;86:1698–702.

    Article  Google Scholar 

  10. Gross CG, Mishkin M. The neural basis of stimulus equivalence across retinal translation. In: Harnad S, Dorty R, Jaynes J, Goldstein L, Krauthamer G, editors. Lateralization in the nervous system. New York: Academic Press; 1977.

    Google Scholar 

  11. Hecht-Nielsen R. Neurocomputing. Reading: Addison-Wesley; 1989.

    Google Scholar 

  12. Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Englewood: Prentice-Hall; 1992.

    Google Scholar 

  13. Kosslyn SM. Image and brain, the resolution of the imagery debate. Cambridge: The MIT Press; 1994.

    Google Scholar 

  14. McClelland J, Rumelhart D. Distributed memory and the representation of general and specific memory. J Exp Psychol Gen 1985;114:159–88.

    Article  PubMed  CAS  Google Scholar 

  15. Osherson DN. New axioms for the contrast model of similarity. J Math Psychol 1987;31:93–103.

    Article  Google Scholar 

  16. Palm G. Neural assemblies, an alternative approach to artificial intelligence. New York: Springer; 1982.

    Google Scholar 

  17. Palm G. Assoziatives Gedächtnis und Gehirntheorie. In: Gehirn und Kognition. Spektrum der Wissenschaft; 1990. p. 164–74.

  18. Palm G, Schwenker F, Sommer F, Strey A. Neural associative memories. In: Krikelis A, Weems C (ed) Associative processing and processors. New York: IEEE Press; 1997. p. 307–25.

    Google Scholar 

  19. Posner MI, Raichle ME. Images of mind. New York: Scientific American Library; 1994.

    Google Scholar 

  20. Singer W, Gary C. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995;18:555–86.

    Article  PubMed  CAS  Google Scholar 

  21. Steinbuch K. Die Lernmatrix. Kybernetik 1961;1:36–45.

    Article  Google Scholar 

  22. Triesmann A, Gormican S. Feature analysis in early vision. Psyhol Rev 1988;95:15–30.

    Article  Google Scholar 

  23. Tversky A. Feature of similarity. Psychol Rev 1977;84:327–352.

    Article  Google Scholar 

  24. Wennekers T. Synchronisation und Assoziation in Neuronalen Netzen. Aachen: Shaker Verlag; 1999.

    Google Scholar 

  25. Wichert A. Sub-symbols and icons. Cognit Comput 2009;1(4):342–47.

    Article  Google Scholar 

  26. Wichert A, Pereira JD, Carreira P. Visual search light model for mental problem solving. Neurocomputing 2008. doi:10.1016/j.neucom.2007.08.019.

Download references

Acknowledgments

This work was supported by Fundao para a Cencia e Tecnologia (FCT) (INESC-ID multiannual funding) through the PIDDAC Program funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichert, A. The Role of Attention in the Context of Associative Memory. Cogn Comput 3, 311–320 (2011). https://doi.org/10.1007/s12559-010-9064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9064-1

Keywords

Navigation