Skip to main content
Log in

Controlling Chaotic Associative Memory for Multiple Pattern Retrieval

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Associative memory in chaotic neural networks differs from traditional associative memory models in their rich dynamics that may lead to promising solutions for a number of information processing problems. In this paper, we propose a new method to control the chaotic neural network, whose refractoriness is tuned by using feedback control based on online averaging of network states. An augmented autoassociative layer is employed to further improve the retrieval performance. Simulation results demonstrate that the proposed chaotic neural network model gives favourable performance in handling noisy, incomplete and composite patterns, while in the meantime achieving either enhanced or comparable memory capacity compared with the conventional Hopfield net and other chaotic neural network models. With the ability to retrieve multiple patterns from memory according to their similarity, it is promising for the proposed network to be applied in real-world information retrieval tasks upon further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adachi M, Aihara K. Associative dynamics in a chaotic neural network. Neural Netw. 1997;8:83–98.

    Article  Google Scholar 

  2. Aihara K. Chaos engineering and its application to parallel distributed processing with chaotic neural networks. Proceedings of IEEE. 2002;90(5):919–30.

    Google Scholar 

  3. Aihara K, Takabe T, Toyoda M. Chaotic neural networks. Phys Lett A. 1990;144:333–40.

    Article  Google Scholar 

  4. Calitoiu D, Oommen BJ. Desynchronizing a chaotic pattern recognition neural network to model inaccurate perception. IEEE Trans. Sys. Man Cybern. Part B. 2007;37:692–704.

    Article  Google Scholar 

  5. Carpenter G, Grossberg S. Adaptive resonance theory (ART). 2nd ed. Cambridge: MIT Press; 2003. p. 79–82.

    Google Scholar 

  6. Chartier S, Renaud P, Boukadoum M. A nonlinear dynamic artificial neural network model of memory. New Ideas Psychol. 2008;26(2):252–77. doi:10.1016/j.newideapsych.2007.07.005 http://www.sciencedirect.com/science/article/B6VD4-4PK8MJ7-1/2/9c68ac243863610954a6d0e0af16a647. Dynamics and Psychology.

  7. Chau M, Chen H. Incorporating web analysis into neural networks: an example in hopfield net searching. IEEE Trans Syst, Man, Cybern, Part C. 2007;37(3):352–8.

    Article  Google Scholar 

  8. Chen L, Aihara K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 1995;8:915–30.

    Article  Google Scholar 

  9. Deng D. Content-based image collection summarization and comparison using self-organizing maps. Pattern Recognit. 2007;40(2):718–27.

    Article  Google Scholar 

  10. Deng JD, Li S. Improving the pattern retrieval characteristics of the aihara chaotic neural network mode. In: Proceedings of ICITA’08; 2008. p. 732–7.

  11. Hasegawa M, Ikeguchi T, Aihara K. Solving large scale traveling salesman problems by chaotic neurodynamics. Neural Netw. 2002;15(2):271–83. http://dx.doi.org/10.1016/S0893-6080(02)00017-5.

  12. Haykin S. Neural networks: a comprehensive foundation. Prentice Hall: Upper Saddle River; 1999.

    Google Scholar 

  13. He G, Chen L, Aihara K. Associative memory with a controlled chaotic neural network. Neurocomputing 2008;71:2794–805.

    Article  Google Scholar 

  14. He G, Shirimali MD, Aihara K. Threshold control of chaotic neural network. Neural Netw. 2008;21:114–21.

    PubMed  Google Scholar 

  15. He G, Shrimali MD, Aihara K. Partial state feedback control of chaotic neural networks and its application. Phys Lett A. 2007;371:228–33.

    Article  CAS  Google Scholar 

  16. Hopfield JJ. Neural networks and physical systems with emergent collective computation abilities. Proc Nat Acad Sci. 1982;79:2554–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kanamaru T. Chaotic pattern transitions in pulse neural networks. Neural Netw. 2007;20(7):781–90. http://dx.doi.org/10.1016/j.neunet.2007.06.002.

    Google Scholar 

  18. Kohonen T, Schroeder MR, Huang TS, editors. Self-organizing maps. Secaucus: Springer; 2001.

    Google Scholar 

  19. Kosuge S, Osana Y. Chaotic associative memory using distributed patterns for image retrieval by shape information. In: Proceedings of interernational joint conference neural networks (IJCNN) 2004, vol. 2; 2004. p. 903–8.

  20. Kristian Nybo JV, Kaski S. The self-organizing map as a visual information retrieval method. In: Proceedings of WSOM’07, 6th international workshop on self-organizing maps. 2007. http://eprints.pascal-network.org/archive/00003556/.

  21. Lee R. Lee-associator- a chaotic auto-associative network for progressive memory recalling. Neural Netw. 2006;19:644–66.

    Article  PubMed  Google Scholar 

  22. Lin JS. Annealed chaotic neural network with nonlinear self-feedback and its application to clustering problem. Pattern Recognit 2001;34:1093–104.

    Article  Google Scholar 

  23. Mirzaei A, Safabakhsh R. Optimal matching by the transiently chaotic neural network. Appl Soft Comput. 2009;9(3):863–73. doi:10.1016/j.asoc.2008.07.009.

    Article  Google Scholar 

  24. Park SS, Seo KK, Jang DS. Expert system based on artificial neural networks for content-based image retrieval. Expert Syst Appl 2005;29(3):589–97. doi:10.1016/j.eswa.2005.04.027.

    Article  Google Scholar 

  25. Romero RAF, Vicentini JF, Oliveira PR, Traina AMJ. Investigating the potential of art neural network models for indexing and information retrieval: Research articles. Int J Intell Syst 2007; 22(4):319–36. http://dx.doi.org/10.1002/int.v22:4.

  26. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenom. 1985;16(3):285–317. doi:10.1016/0167-2789(85)90011-9.

    Article  Google Scholar 

  27. Xiu C, Liu X, Tang Y, Zhang Y. A novel network of chaotic elements and its application in multi-valued associative memory. Phys Lett A. 2004;331:217–24.

    Article  CAS  Google Scholar 

  28. Zhao L, Caceres J, Damiance A Jr, Szu H. Chaotic dynamics for multi-value content addressable memory. Neurocomputing 2006;69:1628–36.

    Article  Google Scholar 

  29. Zhao L, Cupertino TH, Bertini JR Jr. Chaotic synchronization in general network topology for scene segmentation. Neurocomputing 2008;71(16-18):3360–6. http://dx.doi.org/10.1016/j.neucom.2008.02.024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah D. Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J.D. Controlling Chaotic Associative Memory for Multiple Pattern Retrieval. Cogn Comput 2, 257–264 (2010). https://doi.org/10.1007/s12559-010-9043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9043-6

Keywords

Navigation