Cognitive Computation

, Volume 1, Issue 1, pp 17–21 | Cite as

Is a Machine Realization of Truly Human-Like Intelligence Achievable?

  • James L. McClellandEmail author


Even after more than a half a century of research on machine intelligence, humans remain far better than our strongest computing machines at a wide range of natural cognitive tasks, such as object recognition, language comprehension, and planning and acting in contextually appropriate ways. While progress is being made in many of these areas, computers still lack the fluidity, adaptability, open-endedness, creativity, purposefulness, and insightfulness we associate with the supreme achievements of human cognitive ability. Reasons for this and prospects for overcoming these limitations are discussed.


Human cognition Open-ended problem solving Computational theory Cognitive architecture Learning algorithms Nurturance Culture Education 


  1. 1.
    Anderson JR, Lebiere C. The atomic components of thought. Mahwah, NJ: Erlbaum; 1998.Google Scholar
  2. 2.
    Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Schölkopf B, Platt J, Hoffman T, editors. Advances in neural information processing systems (NIPS). Cambridge, MA: MIT Press; 2007.Google Scholar
  3. 3.
    CBS News Online: IBM and Sun Microsystems hit ‘petaflop’ speed, June 26, 2007. (2007). Accessed 16 Jan 2009.
  4. 4.
    Geisler WS, Perry JS. Contour statistics in natural images: grouping across occlusions. Visual Neurosci. (in press). Google Scholar
  5. 5.
    Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.PubMedCrossRefGoogle Scholar
  6. 6.
    IBM Website: 704 Data processing system. IBM Archives. (2008). Accessed 13 Nov 2008.
  7. 7.
    Jilk DJ, Lebiere C, O’Reilly RC, Anderson JR. SAL: an explicitly pluralistic cognitive architecture. J Exp Theor Artif Intell. 2008;20:197–218.CrossRefGoogle Scholar
  8. 8.
    Karklin Y, Lewicki MS. Emergence of complex cell properties by learning to generalize in natural scenes. Nature. 2009;457:83–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Kemp C, Tenenbaum JB. The discovery of structural form. Proc Natl Acad Sci. 2008;105(31):10687–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Laird JE. Extending the soar cognitive architecture. Memphis, TN: Artificial General Intelligence Conference; 2008.Google Scholar
  11. 11.
    Marr D. Vision. San Francisco: Freeman; 1982.Google Scholar
  12. 12.
    Martin WA, Fateman RJ. The MACSYMA system. In: Proceedings of 2nd symposium on symbolic and algebraic manipulation. New York: ACM; 1971. p. 59–75.Google Scholar
  13. 13.
    Newell A. You cannot play 20 questions with nature and win: projective comments on the papers of this symposium. In: Chase WG, editor. Visual information processing. New York: Academic Press; 1973. p. 283–308.Google Scholar
  14. 14.
    Newell A. Unified theories of cognition. Cambridge, MA: Harvard University Press; 1994.Google Scholar
  15. 15.
    Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(6583):607–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Ranzato M, Poultney C, Chopra A, LeCun Y. Efficient learning of sparse representations with an energy-based model. In: Schölkopf B, Platt J, Hoffman T, editors. Advances in neural information processing systems (NIPS). Cambridge, MA: MIT Press; 2007. p. 1137–44.Google Scholar
  17. 17.
    Rogers TT, McClelland JL. Precis of semantic cognition, a parallel distributed processing approach. Behav Brain Sci. 2008;31:689–749.PubMedCrossRefGoogle Scholar
  18. 18.
    Rumelhart DE, McClelland JL, the PDP research group. Parallel distributed processing: explorations in the microstructure of cognition, Volume I. Cambridge, MA: MIT Press; 1986.Google Scholar
  19. 19.
    Serre T, Oliva A, Poggio T. A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci. 2008;104(15):6424–9.Google Scholar
  20. 20.
    Simon H. Models of my life. New York: Basic Books; 1991.Google Scholar
  21. 21.
    Smith EC, Lewicki MS. Efficient auditory coding. Nature. 2006;439(7079):978–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Sun R. Duality of the mind. Mahwah, NJ: Erlbaum; 2002.Google Scholar
  23. 23.
    Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.Google Scholar
  24. 24.
    Vogelstein RJ, Mallik U, Culurciello E, Cauwenberghs G, Etienne-Cummings R. A multi-chip neuromorphic system for spike-based visual information processing. Neural Comput. 2007;19(9):2281–300.PubMedCrossRefGoogle Scholar
  25. 25.
    Weng J, McClelland JL, Pentland A, Sporns O, Stockman I, Sur M, et al. Autonomous mental development by robots and animals. Science. 2001;291:599–600.PubMedCrossRefGoogle Scholar
  26. 26.
    Zaghloul KA, Boahen K. A silicon retina that reproduces signals in the optic nerve. J Neural Eng. 2006;3(4):257–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyStanford UniversityStanfordUSA

Personalised recommendations