Advertisement

Mécanismes et pathologies du vieillissement

  • A. Ly
  • A. Shevelev
  • C. Andres
  • X. Y. Pan
  • J. Trojan
Article de Synthèse / Review Article

Résumé

Le vieillissement est une perte progressive et inéluctable des capacités fonctionnelles de l’organisme. Des caractéristiques socio-économiques, des facteurs génétiques et le genre influent sur ce processus et en déterminent la complexité. Les mécanismes moléculaires et cellulaires, qui fondent la physiologie du vieillissement et de la longévité, commencent à être mieux élucidés. Souvent ambivalents, ils sont aussi impliqués dans la survenue de nombreuses pathologies liées à l’âge. Certains d’entre-eux (les principaux) sont décrits dans cet article (restriction calorique, séquences télomériques, klotho, Apolipoprotéine E, voie de signalisation mTOR, axe IGF-1/PI3 kinase/insuline, sirtuines, autophagie, radicaux libres, etc.). Une meilleure compréhension de ces mécanismes suscite beaucoup d’espoirs en termes de prévention et de perspectives thérapeutiques. Néanmoins, des dérives éthiques possibles sont redoutées. Le vieillissement est, ainsi, un enjeu sociétal et de santé publique aussi bien dans les pays développés que dans les pays en développement. Le problème de sa prise en charge se posera avec acuité devant l’augmentation de l’espérance de vie et du nombre de personnes âgées dans le monde.

Mots clés

Vieillissement Pathologies liées à l’âge Cancers Maladies non transmissibles Mécanismes Éthique 

Mechanisms and aging related diseases

Abstract

Aging is known as a process leading to a progressive and relentless decline of functional capacities. Social, economic, gender and genetic factors are key modulators of its complexity. A better understanding of cellular and molecular mechanisms that underlie aging and life span physiology is slowly but surely occurring. Here, we give a comprehensive synthesis of the main biological mechanisms controlling aging and aging related diseases (caloric restriction, telomeric sequences, Klotho, Apolipoproteine E, mTOR pathway, IGF-1/PI3 kinase/insulin axis, sirtuins, autophagy, free radicals...). Promising hopes in terms of aging prevention and therapeutic perspectives are made in the near future. Nevertheless, general public fear ethical excesses. At all events, aging is becoming a social and public health stake in developed and developing countries. The elderly care management will be a huge issue regarding the enhancement of life span and the growing number of seniors worldwide.

Keywords

Aging Age related diseases Cancers Non communicable diseases Mechanisms Ethic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Newman A, Newman C, Jane A (2012) The epidemiology of aging. Springer, 2012Google Scholar
  2. 2.
    Martin GM (2011) The biology of aging: 1985–2010 and beyond. FASEB 25:3756–3762CrossRefGoogle Scholar
  3. 3.
    http://genomics.senescence.info/species/ (dernier accès le 18 mars 2013)
  4. 4.
    Allard M, Lebre V, Robine JM, Calment J (1998) Jeanne Calment: from Van Gogh’s time to ours: 122 extraordinary years. New York: W.H. Freeman, 1998Google Scholar
  5. 5.
    Austad SN (2006) Why women live longer than men: sex differences in longevity. Gend Med 3:79–92PubMedCrossRefGoogle Scholar
  6. 6.
    Guérin S (2011) La nouvelle société des seniors, Michalon, 2011, ParisGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Aboderin I (2012) Global poverty, inequalities and ageing in Sub-Saharan Africa: a focus for policy and scholarship. J Pop Ageing 5:87–90CrossRefGoogle Scholar
  12. 12.
    WHO (2012) Une bonne santé pour mieux vieillir. Geneva, WHO, 2012Google Scholar
  13. 13.
    Herrmann M (2012) Population aging and economic development: Anxieties and policy responses. J Pop Ageing 5:23–46CrossRefGoogle Scholar
  14. 14.
    de Magalhaes JP, Wuttke D, Wood SH, et al (2012) Genomeenvironment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev 64:88–101PubMedCrossRefGoogle Scholar
  15. 15.
    Austad SN (2004) Is aging programed? Aging Cell 3:249–251PubMedCrossRefGoogle Scholar
  16. 16.
    Revollo JR, Li X (2013) The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 38:160–167PubMedCrossRefGoogle Scholar
  17. 17.
    Haigis MC, Guarente L (2006) Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921PubMedCrossRefGoogle Scholar
  18. 18a.
    Hutchison CJ (2011) The role of DNA damage in laminopathy progeroid syndromes. Biochem Soc Trans 39:1715–1718PubMedCrossRefGoogle Scholar
  19. 18b.
    Varela I, Pereira S, Ugalde AP, et al (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nature Medicine 14:767–772PubMedCrossRefGoogle Scholar
  20. 19.
    Faragher RG, Kill IR, Hunter JA, et al (1993) The gene responsible for Werner syndrome may be a cell division bcountingQ gene. PNAS 90:12030–12034PubMedCrossRefGoogle Scholar
  21. 20.
    Gire V (2005) La sénescence. Une barrière télomérique à l’immortalité ou une réponse cellulaire aux stress physiologiques ? Médecine/Sciences 21:491–497CrossRefGoogle Scholar
  22. 21.
    Mikhelson VM, Gamaley IA (2012) Telomere shortening is a sole mechanism of aging in mammals. Curr Aging Sci 5:203–208PubMedCrossRefGoogle Scholar
  23. 22.
    Gomez DE, Armando RG, Farina HG, et al (2012) Telomere structure and telomerase in health and disease (review). Int J Oncol 41:1561–1569PubMedGoogle Scholar
  24. 23.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  25. 24.
    Olovnikov AM (1973) A theory of marginotomy: the incomplete copying of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190PubMedCrossRefGoogle Scholar
  26. 25.
    Sanders [REMOVED HYPERLINK FIELD] JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 35:112–131CrossRefGoogle Scholar
  27. 26.
    Sanz A, Stefanatos RK (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1:10–21PubMedCrossRefGoogle Scholar
  28. 27.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontology 11:298–300CrossRefGoogle Scholar
  29. 28.
    Gomez-Cabrera MC, Sanchis-Gomar F, et al (2012) Mitochondria as sources and targets of damage in cellular aging. Clin Chem Lab Med 50:1287–1295PubMedCrossRefGoogle Scholar
  30. 29.
    Barouki R (2006) Stress oxydant et vieillissement. Médecine/Sciences 22:266–272CrossRefGoogle Scholar
  31. 30.
    Legallet JY, Ardaillou R (2009) Biologie du vieillissement. Bull Acad Natle Méd, Tome 193, No 2, p. 365–404Google Scholar
  32. 31.
    Every AE, Russu IM (2013) Opening dynamics of 8-oxoguanine in DNA. J Mol Recognit 26:175–180PubMedCrossRefGoogle Scholar
  33. 32.
    Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109: 249–275PubMedCrossRefGoogle Scholar
  34. 33.
    Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695PubMedCrossRefGoogle Scholar
  35. 34.
    Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659PubMedGoogle Scholar
  36. 35.
    Vellai T, Takács-Vellai K, Sass M, Klionsky DJ (2009) The regulation of aging: does autophagy underlie longevity? Trends Cell Biol 19:487–494PubMedCrossRefGoogle Scholar
  37. 36.
    Song E, Jaishankar GB, Saleh H, et al (2011) Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy 9:10PubMedCrossRefGoogle Scholar
  38. 37.
    Kappeler L, Magalhaes Filho C, Le Bouc Y, Holzenberger M (2006) Durée de vie, génétique et axe somatotrope. Médecine/Ssciences 22:259–265CrossRefGoogle Scholar
  39. 38.
    Berryman DE, Christiansen JS, Johannsson G, et al (2008) Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 18:455–471PubMedCrossRefGoogle Scholar
  40. 38a.
    Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin like growth factors. Annu Rev Physiol 47:443–67PubMedCrossRefGoogle Scholar
  41. 38b.
    Trojan J, Cloix JF, Ardourel M, et al (2007) IGF-I biology and targeting in malignant glioma. Neuroscience 145:795–811PubMedCrossRefGoogle Scholar
  42. 38c.
    Le Roith D (2003) The insulin-like growth factor system. Exp Diabesity Res 4:205–212PubMedCrossRefGoogle Scholar
  43. 39.
    Boccitto M, Lamitina T, Kalb RG (2012) Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PLoS One 7:e33494CrossRefGoogle Scholar
  44. 40.
    Honda Y, Tanaka M, Honda S (2008) Modulation of longevity and diapause by redox regulation mechanisms under the insulinlike signaling control in Caenorhabditis elegans. Exp Gerontol 43:520–529PubMedCrossRefGoogle Scholar
  45. 41.
    Broughton S, Alic N, Slack C, et al (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One. 3:e3721PubMedCrossRefGoogle Scholar
  46. 42.
    Tazearslan Miook C, Cho1, Suh Y (2012) Discovery of functional gene variants associated with human longevity: opportunities and challenges. J Gerontol A Biol Sci Med Sci 67A:376–383CrossRefGoogle Scholar
  47. 42a.
    Obrepalska-Steplowska A, Kedzia A, Trojan J, Gozdzicka-Jozefiak A (2003) Analysis of coding and promoter sequences of the IGF-I gene in children with growth disorders presenting with normal level of growth hormone. J Pediatr Endocrinol Metab 16:1267–1275PubMedGoogle Scholar
  48. 42b.
    Harrela M, Koistinen H, Kaprio J, et al (1996) Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 98:2612–2615PubMedCrossRefGoogle Scholar
  49. 43.
    Puche JE, Castilla-Cortázar I (2012) Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 10:224PubMedCrossRefGoogle Scholar
  50. 44.
    Ly A, Duc HT, Kalamarides M, et al (2001) Human glioma cells transformed by IGF-I triple helix technology show immune and apoptotic characteristics determining cell selection for gene therapy of glioblastoma. Mol Pathol 54:230–239PubMedCrossRefGoogle Scholar
  51. 45.
    Trojan J, Pan YX, Wei MX, Ly A, et al (2012) Methodology for Anti-Gene Anti-IGF-I Therapy of Malignant Tumours. Chemother Res Pract. 2012:721873Google Scholar
  52. 45a.
    Baulieu EE (1995) Studies on dehydroepiandrosterone (DHEA) and its sulphate during aging. C R Acad Sci III 318:7–11PubMedGoogle Scholar
  53. 46.
    Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92:131–155PubMedCrossRefGoogle Scholar
  54. 47.
    Kuro-o M, Matsumura Y, Aizawa H, et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedCrossRefGoogle Scholar
  55. 48.
    Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058PubMedCrossRefGoogle Scholar
  56. 49.
    Kuro-o M (2012) Klotho in health and disease. Curr Opin Nephrol Hypertens 21:362–368PubMedCrossRefGoogle Scholar
  57. 50.
    Wolff S, Ma H, Burch D, et al (2006) SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell 124:1039–1053PubMedCrossRefGoogle Scholar
  58. 51.
    Panowski SH, Wolff S, Aguilaniu H, et al (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555CrossRefGoogle Scholar
  59. 52.
    Andrysik Z, Bernstein WZ, Deng L, et al (2010) The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res 38: 2931–2943PubMedCrossRefGoogle Scholar
  60. 53.
    Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171PubMedCrossRefGoogle Scholar
  61. 54.
    Ghosh S, Liu B, Zhou Z (2013) Resveratrol activates SIRT1 in a Lamin A-dependent manner. Cell Cycle 12:872–876PubMedCrossRefGoogle Scholar
  62. 55.
    Tiraby C, Langin D (2005) PGC-1α, un co-activateur transcriptionnel impliqué dans le métabolisme. Médecine/Sciences 21:49–54CrossRefGoogle Scholar
  63. 56.
    Canto C, Auwerx J (2009) PGC-1a, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology 20:98–105PubMedCrossRefGoogle Scholar
  64. 57.
    Milne JC, Lambert PD, Schenk S, et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–715PubMedCrossRefGoogle Scholar
  65. 58.
    Walford RL, Mock D, et al (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57:B211–B224PubMedCrossRefGoogle Scholar
  66. 59.
    U.S. National Institute on Aging. National Institutes of Health (2002) Panel on the characterization of participants in the studies of exceptional survival in humans. www.nia.nih.gov/ResearchInformation/ConferencesAndMeetings/NIAPanel.html (dernier accès le 18 mars 2013)Google Scholar
  67. 60.
    http://www.okicent.org/study.html (dernier accès le 18 mars 2013)
  68. 61.
    Chan YC, Suzuki M, Yamamoto S (1997) Dietary, anthropometric, hematological and biochemical assessment of the nutritional status of centenarians and elderly people in Okinawa, Japan. J Am Coll Nutr 16:229–235PubMedGoogle Scholar
  69. 62.
    Takata H, Suzuki M, Ishii T, Sekiguchi S, Iri H (2006) Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet 2:824–826Google Scholar
  70. 63.
    Willcox BJ, Willcox DC, He Q et al (2006) Siblings of Okinawan (2006) centenarians exhibit lifelong mortality advantages. J Gerontol A Biol Sci Med Sci. 61:345–354PubMedCrossRefGoogle Scholar
  71. 64.
    McKay GJ, Silvestri G, Chakravarthy U, et al (2011) Variations in apolipoprotein e frequency with age in a pooled analysis of a large group of older people. [REMOVED HYPERLINK FIELD] Am J Epidemiol 173:1357–1364CrossRefGoogle Scholar
  72. 65.
    Bonomini F, Filippini F, Hayek T, et al (2010) Apolipoprotein E and its role in aging and survival. Exp Gerontol 45:149–157PubMedCrossRefGoogle Scholar
  73. 66.
    Koffie RM, Hashimoto T, Tai HC, et al (2012) Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 135(Pt 7):2155–2168PubMedCrossRefGoogle Scholar
  74. 67.
    Siest G, Bertrand P, Herbeth B, et al (2000) Apolipoprotein E polymorphisms and concentration in chronic diseases and drug responses. Clin Chem Lab Med 38:841–852PubMedGoogle Scholar
  75. 68.
    Kuhlmann I, Minihane AM, Huebbe P, et al (2010) Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Lipids in Health and Disease 9:1–14CrossRefGoogle Scholar
  76. 69.
    Edrey YH, Hanes M, Pinto M, et al (2011) Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J 52:41–53PubMedCrossRefGoogle Scholar
  77. 70.
    Gorbunova V, Hine C, Tian X, et al (2012) Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Acad Sci USA 109:19392–19396CrossRefGoogle Scholar
  78. 71.
    Harrison DE, Strong R, Sharp ZD, et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedGoogle Scholar
  79. 72.
    Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493: 338–345PubMedCrossRefGoogle Scholar
  80. 72a.
    Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTORtargeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537PubMedCrossRefGoogle Scholar
  81. 72b.
    Yu K, Shi C, Toral-Barza L (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 70:621–631PubMedCrossRefGoogle Scholar
  82. 73.
    Holliday R (2009) The extreme arrogance of anti-aging medicine. Biogerontology 10: 223–228PubMedCrossRefGoogle Scholar
  83. 74.
    Partridge B, Lucke J, Bartlett H (2009) Ethical, social, and personal implications of extended human lifespan identified by members of the public. Rejuvenation Res 12:351–357PubMedCrossRefGoogle Scholar
  84. 75.
    Sebastiani P, Solovieff N, Dewan AT, et al (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7:e29848PubMedCrossRefGoogle Scholar
  85. 76.
    Fonds des Nations Unies pour la population (2011) État de la population mondiale 2011 rapport ISBN 978-0-89714-991-4, New York, UNFPA http://foweb.unfpa.org/SWP2011/reports/FR-SWOP2011.pdf (dernier accès le 18 mars 2013)Google Scholar
  86. 77.
    Dancey J (2010) mTOR signaling and drug development in cancer Nature Reviews Clinical Oncology 7:209–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • A. Ly
    • 1
    • 2
  • A. Shevelev
    • 3
  • C. Andres
    • 4
  • X. Y. Pan
    • 5
  • J. Trojan
    • 2
    • 6
  1. 1.AfrocancerParis cedex 17France
  2. 2.Inserm U602, hôpital Paul-BrousseUniversité Paris XIVillejuifFrance
  3. 3.Laboratory of Cell Engineering, Cardiology InstituteMoscow UniversityMoscowRussia
  4. 4.INSERM U930, hôpital BretonneauUniversité de ToursToursFrance
  5. 5.Department of General Medical SciencesCase Western Reserve UniversityClevelandUSA
  6. 6.Faculty of MedecineEl Bosque UniversityBogotaColombia

Personalised recommendations