Skip to main content
Log in

Gaussian Sum FIR Filtering for 2D Target Tracking

  • Control Theory and Applications
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

The constant velocity (CV) motion model has been typically used in 2-dimensional (2D) target tracking problems, but it has an uncertain process noise covariance problem. Unlike the Kalman filter (KF), the least square finite impulse response filter (LSFF) does not require noise covariance information and can overcome the uncertain process noise covariance problem. However, the LSFF has a cumbersome problem that is to select a suitable value of design parameter called the horizon size. This paper proposes a Gaussian sum FIR filter (GSFF), where the Gaussian sum method is used to deal with the horizon size in LSFFs. The GSFF overcomes the uncertain process noise covariance problem and can be alternative to existing filters in 2D target tracking. Superior performance of GSFF is demonstrated by comparison with the Gaussian sum KF (GSKF) that is an existing filter to solve the uncertain process noise covariance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-S. R. S.-K. H and J. B. Park, “Tdoa/fdoa based target tracking with imperfect position and velocity data of distributed moving sensors,” International Journal of Control, Automation, and Systems, vol. 15, no. 3, pp. 1155–1166, Jun. 2017.

    Article  MathSciNet  Google Scholar 

  2. X. L. P. Wu and Y. Bo, “Iterated square root unscented Kalman filter for maneuvering target tracking using tdoa measurements,” International Journal of Control, Automation, and Systems, vol. 11, no. 4, pp. 761–767, Aug. 2013.

    Article  MathSciNet  Google Scholar 

  3. B. Li and J. Zhao, “Auxiliary particle bernoulli filter for target tracking,” International Journal of Control, Automation, and Systems, vol. 15, no. 3, pp. 1249–1258, Jun. 2017.

    Article  MathSciNet  Google Scholar 

  4. B. Li, “Multiple-model rao-blackwellized particle probability hypothesis density filter for multitarget tracking,” International Journal of Control, Automation, and Systems, vol. 13, no. 2, pp. 426–433, Apr. 2015.

    Article  Google Scholar 

  5. P.. Gutman and M. Velger, “Tracking targets using adaptive Kalman filtering,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 5, pp. 691–699, Sep. 1990.

    Article  Google Scholar 

  6. T. R. Kronhamn, “Bearings-only target motion analysis based on a multihypothesis kalman filter and adaptive own-ship motion control,” IEE Proceedings-Radar, Sonar and Navigation, vol. 145, no. 4, pp. 247–252, Aug. 1998.

    Article  Google Scholar 

  7. W. F. Leven and A. D. Lanterman, “Unscented kalman filters for multiple target tracking with symmetric measurement equations,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 370–375, Feb. 2009.

    Article  MathSciNet  Google Scholar 

  8. M. R. Morelande and S. Challa, “Manoeuvring target tracking in clutter using particle filters,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 1, pp. 252–270, Jan. 2005.

    Article  Google Scholar 

  9. A. N. Bishop, P. N. Pathirana, and A. V. Savkin, “Radar target tracking via robust linear filtering,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 1028–1031, Dec. 2007.

    Article  Google Scholar 

  10. A. N. Bishop, A. V. Savkin, and P. N. Pathirana, “Vision-based target tracking and surveillance with robust set-valued state estimation,” IEEE Signal Processing Letters, vol. 17, no. 3, pp. 289–292, March 2010.

    Article  Google Scholar 

  11. Z. Zhao, T. X. R. Li, and V. P. Jilkov, “Best linear unbiased filtering with nonlinear measurements for target tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 4, pp. 1324–1336, Oct. 2004.

    Article  Google Scholar 

  12. A. Jazwinski, “Limited memory optimal filtering,” IEEE Transactions on Automatic Control, vol. 13, no. 5, pp. 558–563, October 1968.

    Article  MathSciNet  Google Scholar 

  13. W. H. Kwon, P. S. Kim, and P. Park, “A receding horizon kalman FIR filter for discrete time-invariant systems,” IEEE Trans. Autom. Control, vol. 44, no. 9, pp. 1787–1791, Sep. 1999.

    Article  MathSciNet  Google Scholar 

  14. W. H. Kwon, K. S. Lee, and O. K. Kwon, “Optimal FIR filters for time-varying state-space models,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 6, pp. 1011–1021, Nov. 1990.

    Article  MathSciNet  Google Scholar 

  15. W. H. Kwon and S. Han, Receding Horizon Control: Model Predictive Control for State Models, Springer-Verlag, London, 2005.

    Google Scholar 

  16. Y. S. Shmaliy, “Linear optimal FIR estimation of discrete time-invariant state-space models,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086–3096, Jun. 2010.

    Article  MathSciNet  Google Scholar 

  17. I. H. Choi, J. M. Pak, C. K. Ahn, Y. H. Mo, M. T. Lim, and M. K. Song, “New preceding vehicle tracking algorithm based on optimal unbiased finite memory filter,” Measurement, vol. 73, pp. 262–274, Sep. 2015.

    Article  Google Scholar 

  18. C. J. Lee, J. M. Pak, C. K. Ahn, K. M. Min, P. Shi, and M. T. Lim, “Multi-target FIR tracking algorithm for markov jump linear systems based on true-target decision-making,” Neurocomputing, vol. 168, pp. 298–307, Jan. 2015.

    Article  Google Scholar 

  19. J. M. Pak, C. K. Ahn, M. T. Lim, and M. K. Song, “Horizon group shift FIR filter: alternative nonlinear filter using finite recent measurements,” Measurement, vol. 57, pp. 33–45, Nov. 2014.

    Article  Google Scholar 

  20. J. M. Pak, C. K. Ahn, Y. S. Shmaliy, and M. T. Lim, “Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering,” IEEE Trans. on Industrial Informatics, vol. 11, no. 5, pp. 1089–1098, Oct. 2015.

    Article  Google Scholar 

  21. J. M. Pak, C. K. Ahn, Y. S. Shmaliy, P. Shi, and M. T. Lim, “Switching extensible FIR filter bank for adaptive horizon state estimation with application,” IEEE Trans. on Control Systems Technology, vol. 24, no. 3, pp. 1052–1058, May 2016.

    Article  Google Scholar 

  22. J. M. Pak, C. K. Ahn, C. J. Lee, P. Shi, M. T. Lim, and M. K. Song, “Fuzzy horizon group shift FIR filtering for nonlinear systems with takagi-sugeno model,” Neurocomputing, vol. 174, no. Part B, pp. 1013–1020, Jan. 2016.

    Article  Google Scholar 

  23. J. M. Pak, C. K. Ahn, P. Shi, and M. T. Lim, “Self-recovering extended kalman filtering algorithm based on model-based diagnosis and resetting using an FIR filter,” Neurocomputing, vol. 173, no. Part 3, pp. 645–658, Jan. 2016.

    Article  Google Scholar 

  24. J. M. Pak, C. K. Ahn, Y. H. Mo, M. T. Lim, and M. K. Song, “Maximum likelihood FIR filter for visual object tracking,” Neurocomputing, vol. 216, pp. 543–553, Dec. 2016.

    Article  Google Scholar 

  25. J. M. Pak, P. S. Kim, S. H. You, S. S. Lee, and M. K. Song, “Extended least square unbiased FIR filter for target tracking using the constant velocity motion model,” International Journal of Control, Automation and Systems, vol. 15, no. 2, pp. 947–951, Apr. 2017.

    Article  Google Scholar 

  26. J. M. Pak, C. K. Ahn, P. Shi, Y. S. Shmaliy, and M. T. Lim, “Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks,” IEEE Trans. on Industrial Electronics, vol. 64, no. 6, pp. 5182–5191, Jun. 2017.

    Article  Google Scholar 

  27. J. M. Pak, C. K. Ahn, Y. S. Shmaliy, P. Shi, and M. T. Lim, “Accurate and reliable human localization using composite particle/FIR filtering,” IEEE Trans. on Human-Machine Systems, vol. 47, no. 3, pp. 332–342, Jun 2017.

    Article  Google Scholar 

  28. B. F. L. Scala and R. R. Bitmead, “Design of an extended kalman filter frequency tracker,” IEEE Transactions on Signal Processing, vol. 44, no. 3, pp. 739–742, March 1996.

    Article  Google Scholar 

  29. F. Ramirez-Echeverria, A. Sarr, and Y. S. Shmaliy, “Optimal memory of discrete-time FIR filters in state-space,” IEEE Trans. on Signal Processing, vol. 62, no. 3, pp. 557–561, Feb. 2014.

    Article  MathSciNet  Google Scholar 

  30. H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation using Gaussian sums,” Automatica, vol. 7, no. 4, pp. 465–497, Jul. 1971.

    Article  MathSciNet  Google Scholar 

  31. D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. on Automatic Control, vol. 17, no. 4, pp. 439–448, Aug. 1972.

    Article  Google Scholar 

  32. S. A. B. Ristic and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Arctech House, Norwood, MA, 2004.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Min Pak.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended by Associate Editor Young Soo Suh under the direction of Editor Chan Gook Park. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2017R1C1B5017021).

Jung Min Pak received his B.S., M.S., and Ph.D. degrees in electrical engineering from Korea University, Seoul, Korea, in 2006, 2008, and 2015, respectively. He was a Research Professor of the Brain Korea 21 Plus Humanware IT Program at Korea University from 2015 to 2016. He is currently a Professor in the Department of Electrical Engineering, Wonkwang University, Iksan, Korea. His research interests include state estimation, localization, and visual object tracking.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, J.M. Gaussian Sum FIR Filtering for 2D Target Tracking. Int. J. Control Autom. Syst. 18, 643–649 (2020). https://doi.org/10.1007/s12555-018-0938-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-018-0938-4

Keywords

Navigation