Skip to main content
Log in

Robust Output Disturbance, Actuator and Sensor Faults Reconstruction Using H∞ Sliding Mode Descriptor Observer for Uncertain Nonlinear Boiler System

  • Regular Papers
  • Control Theory and Applications
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

This paper deals with a robust sliding mode descriptor observer for estimation of states and reconstruction of actuator and sensor faults simultaneously in the presence of uncertainties, measurement noise and output disturbances. In the proposed method, the well-known H concepts are used for minimizing the effects of the uncertainty in the estimation of the states and reconstruction of the faults by using the Linear Matrix Inequalities (LMIs). By considering the sensor fault and output disturbance as auxiliary state vectors, an augmented system is established. As a case study, an industrial boiler is considered and the proposed robust observer illustrates the robust performance on estimation of its states and reconstruction of its faults in the presence of uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Cai, H. Ferdowsi, and J. Sarangapani, “Model-based fault detection, estimation, and prediction for a class of linear distributed parameter systems,” Automatica, vol. 66, pp. 122–131, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Li, J. H. Park, and D. Ye, “Fault detection filter design for switched systems with quantisation effects and packet,” IET Control Theory Appl, vol. 11, no. 2, pp. 182–193, 2017. [click]

    Article  MathSciNet  Google Scholar 

  3. C. Keliris, M. M. Polycarpou, and T. Parisini, “A robust nonlinear observer-based approach for distributed fault detection of input–output interconnected systems,” Automatica, vol. 53, pp. 408–415, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Y. Li, Y. B. Gao, P. Shi, and H. K. Lam, “Observerbased fault detection for nonlinear systems with sensor fault and limited communication capacity,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2745–2751, 2016. [click]

    Article  MATH  Google Scholar 

  5. F. B. Dhahri, B. Hmida, and A. Sellami, “Sliding mode observer-based fault reconstruction for uncertain linear systems,” American J. Applied Sciences, vol. 8, no. 10, pp. 1032–1040, 2011.

    Article  Google Scholar 

  6. D. Ye, J. H. Park, and Q. Y. Fan, “Adaptive robust actuator fault compensation for linear systems using a novel fault estimation mechanism,” Int. J. Robust Nonlinear Control, vol. 26, no. 8, pp. 1597–1614, 2016. [click]

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Martinez-Guerra and S. Diop, “Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and differential approach,” IET Control Theory Appl, vol. 151, no. 1, pp. 130–135, 2004. [click]

    Article  Google Scholar 

  8. D. Koenig, B. Marx, and S. Varrier, “Filtering and fault estimation of descriptor switched systems,” Automatica, vol. 63, pp. 116–121, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Bejarano, “Functional unknown input reconstruction of descriptor systems: application to fault detection,” Automatica, vol. 57, p. 2015, 145–151. [click]

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Kalsi, J. Lian, S. Hui, and S. H. Zak, “Sliding-mode observers for systems with unknown inputs: a high-gain approach,” Automatica, vol. 46, no. 2, pp. 347–353, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. M. Tabatabaeipour, “Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems,” J. Frankl. Inst, vol. 351, no. 1, pp. 277–295, 2014. [click]

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Liu, X. Cao, and P. Shi, “Fuzzy-model-based fault tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 5, pp. 789799, 2013.

    Article  Google Scholar 

  13. K. Zhang, B. Jiang, and P. Shi, “Fast fault estimation and accommodation for dynamical systems,” IET Control Theory Appl, vol. 3, no. 2, pp. 189–199, 2009. [click]

    Article  MathSciNet  Google Scholar 

  14. J. W. Zhu, G. H. Yang, H. Wang, and F. L. Wang, “Fault estimation for a class of nonlinear systems based on intermediate estimator,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2518–2524, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Liu, L. Zhang, P. Shi, and H. R. Karimi, “Robust control of stochastic systems against bounded disturbances with application to flight control,” IEEE Transactions on Industrial Electronics, pp. 1504–1516, 2014.

    Google Scholar 

  16. M. &. S. P. Liu, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach,” Automatica, vol. 49, no. 5, pp. 1242–1250, 2013. [click]

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Alwi, C. Edwards, and C. P. Tan, Fault Detection and Fault Tolerant Control Using Sliding Modes, Springer, London, 2011.

    Book  MATH  Google Scholar 

  18. K. C. Veluvolu and Y. C. Soh, “Fault reconstruction and state estimation with sliding mode observers for Lipschitz non-linear systems,” IET Control Theory & Applications, vol. 5, no. 11, pp. 12551263, 2011. [click]

    Article  MathSciNet  Google Scholar 

  19. C. E. a. S. K. Spurgeon, “On the development of discontinuous observers,” International Journal of Control, vol. 59, pp. 1211–1229, 1994. [click]

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Yang, F. Zhu, X. Wang, and X. Bu, “Robust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systems,” International Journal of Control, Automation, and Systems, vol. 13, no. 5, pp. 1–10, 2015

    Article  Google Scholar 

  21. M. S. P. & C.-A. D. Basin, “Central suboptimal H∞ filter design for nonlinear polynomial systems,” International Journal of Adaptive Control and Signal Processing, vol. 23, no. 10, pp. 926–939, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Wang, M. Rodrigues, D. Theilliol, and Y. Shen, “Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems,” International Journal of Adaptive Control and Signal Processing, pp. 1–26, 2013.

    Google Scholar 

  23. M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Ito stochastic systems with a descriptor sliding mode approach,” Automatica, vol. 49, no. 5, pp. 1242–1250, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Chadi and T. M. Guerra, “LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1160–1165, 2012.

    Article  Google Scholar 

  25. Y. Wei, J. Qui, P. Shi, and M. Chadli, “Fixed-order piecewise-affine output feedback controller for fuzzyaffine-model-based nonlinear systems with time-varying delay,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 64, no. 4, pp. 945–958, 2017. [click]

    Article  Google Scholar 

  26. Y. Wei, J. Qin, H. K. Lam, and L. Wu, “Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear Itô stochastic systems,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 3, pp. 569–583, 2017. [click]

    Article  Google Scholar 

  27. Y. Wei, J. Qui, and H. R. Karimi, “Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 64, no. 1, pp. 170–181, 2017. [click]

    Article  Google Scholar 

  28. Y. Wei, J. Qiu, and H. K. Lam, “A novel approach to reliable output feedback control of fuzzy-affine systems with time-delays and sensor faults,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 1808–1823, 2017.

    Article  Google Scholar 

  29. S. Aouaouda, M. Chadli, and M. Boukhnifer, “Speed sensor fault tolerant controller design for induction motor drive in EV,” Neurocomputing, vol. 214, pp. 32–43, 2016. [click]

    Article  Google Scholar 

  30. S. Aouaouda, M. Chadli, M. Boukhnifer, and H. R. Karimi, “Robust fault tolerant tracking controller design for vehicle dynamics: a descriptor approach,” Mechatronics, vol. 30, pp. 316–326, 2015.

    Article  Google Scholar 

  31. H. Karimi, M. Chadli, and P. Shi, “Fault detection, isolation, andtolerant control of vehicles using soft computing methods,” IET Control Theory & Applications, vol. 8, no. 9, pp. 655–657, 2014.

    Article  MathSciNet  Google Scholar 

  32. D. J. Lee, Y. Park, and Y. S. Park, “Robust H sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems,” IEEE Transactions on Automatic Control, vol. 57, no. 11, pp. 2928–2934, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Liu, L. Zhang, P. Shi, and H. R. Karimi, “State feedback control against sensor faults for Lipschitz nonlinear systems via new sliding mode observer techniques,” Proc. of the 29th Chinese Control Conference, Beijing, China, 2010.

    Google Scholar 

  34. Z. Gao and S. X. Ding, “Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach,” IET Control Theory, vol. 1, no. 3, pp. 578–585, 2007. [click]

    Article  Google Scholar 

  35. S. M. Toroghi, M. R. Gharib, A. B. Ramezani, and K. Rahmdel, “Modeling and robust controller design for an industrial boiler,” Energy Procedia, vol. 14, pp. 1471–1477, 2012.

    Article  Google Scholar 

  36. K. Mrunalini, P. Kundu, and K. K. Dutta, “State space model for drum boiler system,” IE (I) Journal-EL, pp. 260–266, 2006.

    Google Scholar 

  37. A. K. Astrom and B. R. Bell, “Drum Boiler Dynamics,” Automatica, vol. 36, no. 3, pp. 363–378, 2000. [click]

    Article  MathSciNet  MATH  Google Scholar 

  38. C. P. Tan and C. Edwards, “An LMI approach for designing sliding mode observer,” Int.J. Control, vol. 59, pp. 1559–1568, 2001.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Yazdizadeh.

Additional information

Recommended by Associate Editor M. Chadli under the direction of Editor Duk-Sun Shim.

Hesam Komari Alaei received the B.Sc. and M.Sc degrees in Electrical Engineering from Petroleum University of Technology (PUT), Ahvaz, Iran. His research interests include linear and nonlinear controls and observers, system identification and fault detection and reconstruction.

Alireza Yazdizadeh received the B.Sc. degree in Electrical Engineering, M.Sc degree in Electrical Engineering (Control and Instrumentation) from IUST and University of Tehran, Tehran, Iran, respectively. He continued his education toward a Ph.D. program at Concordia University, Montreal, QC where he worked as a Post Doctorate Fellow (PDF) after graduation. He is now working at SH. Beheshti University, Tehran, Iran as an associate professor and his research interests include nonlinear control, adaptive control and dynamic stable neural networks, fault detection and isolation with applications in power generation plants like gas turbines, combined cycle power plants, wind turbines and solar systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaei, H.K., Yazdizadeh, A. Robust Output Disturbance, Actuator and Sensor Faults Reconstruction Using H∞ Sliding Mode Descriptor Observer for Uncertain Nonlinear Boiler System. Int. J. Control Autom. Syst. 16, 1271–1281 (2018). https://doi.org/10.1007/s12555-017-0376-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-017-0376-8

Keywords

Navigation