Application of the Fuzzy Logic for the Development of Automnomous Robot with Obstacles Deviation

Regular Paper Robot and Applications
  • 21 Downloads

Abstract

This paper proposed to elaborate a navigation system for an autonomous mobile robot, able to deviate from obstacles, from the study and application of Fuzzy Logic. With the algorithm in operation, it was verified that the Fuzzy logic offers a smoother transition in the movements. In order to validate the efficiency of the navigation system created, simulations were performed with the robot according to the rules inserted in the Fuzzy controller, where the input values of the sensors and the output values in the PWM of the board were analyzed. The results obtained were consistent with the responses given by the simulation in MatLab, following the same trend of behavior. With the realization of this project, it was concluded that the Fuzzy methodology presents a solution to the problems of navigation in real environments, allowing to implement a controller for an autonomous robot that can deflect obstacles avoiding their collision. One of the problems encountered is the angle of actuation of the ultrasonic sensors. This type of sensor works with an angle of actuation of 15◦, which leaves the robot with a low vision area in the use of three sensors. As a result, there may be no reading on objects entering zones without detection, leading to a collision with these obstacles. The responses were satisfactory, following the same trend behavior of the simulations of the Fuzzy controller.

Keywords

Artificial Intelligence autonomous navigation fuzzy Logic mobile robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. H. Winston, Artificial Intelligence, 3rd ed., Addison-Wesley, Massachusetts, 1992.MATHGoogle Scholar
  2. [2]
    C. L. Nascimento Jr and T. Yoneyama, Inteligência Artificial em Controle e Automação, Edgard Blucher, São Paulo, 2004.Google Scholar
  3. [3]
    J. G. Ganascia, Inteligência Artificial, Ed. Ática, São Paulo, 1993.Google Scholar
  4. [4]
    B. Coppin, Inteligência Artificial, LTC, Rio de Janeiro, 2010.Google Scholar
  5. [5]
    F. A. C. Gomide and R. R. Gudwin, “Modelagem, controle, sistemas e lógica Fuzzy,” SBA Controle e Automação, vol. 4, no. 3, pp. 97–115, 1994.Google Scholar
  6. [6]
    D. F. Wolf, E. V. Simões, F. S. Osório, and O. T. Junior, “Robótica móvel inteligente: da simulação às aplicações no mundo real,” Proc. of XXIX CSBC, pp. 279–330, 2009.Google Scholar
  7. [7]
    E. Cox, The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, and Maintaining Fuzzy Systems, AP Professional, New York, 1994.MATHGoogle Scholar
  8. [8]
    S. Yang, C. Li, and T. Huang, “Exponential stabilization and synchronization for fuzzy model of Memristive neural networks by periodically intermittent control,” Neural Networks, vol. 75, pp. 162–172, 2016. [click]CrossRefGoogle Scholar
  9. [9]
    S. Yang, C. Li, and T. Huang, “Impulsive synchronization for TSfuzzy model of Memristor-based chaotic systems with parameter mismatches,” International Journal of Control, Automation and Systems, vol. 14, no. 3, pp. 854–864, 2016. [click]CrossRefGoogle Scholar
  10. [10]
    R. A. Silva, “Inteligência artificial aplicada a ambientes de engenharia de software: uma visão geral,” Proc. of INFOCOMP, vol. 4, no. 4, pp. 27–37, 2005.Google Scholar
  11. [11]
    M. B. de Carvalho, A. Yamakami, and T. R. Bonfim, “Algoritmo híbrido para resolver o problema de escalonamento job shop com incertezas,” TEMA - Tendências em Matemática Aplicada e Computacional, vol. 14, pp. 43–55, 2013.MathSciNetCrossRefGoogle Scholar
  12. [12]
    C. F. M. Almeida and N. Kagan, “Aplicação de algoritmos genéticos e teoria dos conjuntos fuzzy no dimensionamento de sistemas de monitoração para redes de transmissão de energia elétrica,” SBA Controle e Automação, vol. 21, no. 04, pp. 363–378, 2010.CrossRefGoogle Scholar
  13. [13]
    T. C. Callai, L. S. Coelho, and A. A. R. Coelho, “Controle nebuloso adaptativo por modelo de referência: projeto e aplicação em sistemas não-Lineares,” SBA Controle e Automação, vol. 18, no. 04, pp. 479–489, 2007.CrossRefGoogle Scholar
  14. [14]
    R. A. L. Rabêlo, A. A. F. M. Carneiro, R. A. S. Fernandes, and R. T. V. Braga, “Uma abordagem baseada em sistemas de inferência fuzzy Takagi-Sugeno aplicada ao planejamento da operação de sistemas hidrotérmicos de geração,” SBA Controle e Automação, vol. 22, no. 01, pp. 49–64, 2011.CrossRefGoogle Scholar
  15. [15]
    F. Madeiro, R. R. A. Galvão, F. A. B. S. Ferreira, and D. C. Cunha, “Uma alternativa de aceleração do algoritmo fuzzy k-means aplicado à quantização vetorial,” Tema - Tendências em Matemática Aplicada e Computacional, vol. 13, no. 2, pp. 193–206, 2012.MathSciNetCrossRefGoogle Scholar
  16. [16]
    S. T. Monteiro and C. H. C. Ribeiro, “Desempenho de algoritmos de aprendizagem por reforço sob condições de ambiguidade sensorial em robótica móvel,” SBA Controle e Automação, vol. 15, no. 3, pp. 320–338, 2004. [click]CrossRefGoogle Scholar
  17. [17]
    G. Faria and R. A. F. Romero, “Navegação de robôs móveis utilizando aprendizado por reforço e lógica fuzzy,” SBA Controle e Automação, vol. 13, no. 3, pp. 219–230, 2002. [click]CrossRefGoogle Scholar
  18. [18]
    P. T. Megda, L. C. Lulio, M. L. Tronco, G. A. P. Caurin, and M. Becker, “Controle de trajetórias para robôs móveis utilizando lógica fuzzy,” Proc. of VICONEM, vol. 12, pp. 1–8, 2010.Google Scholar
  19. [19]
    E. H. Mandani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis,” Proc. of IEEE Transactions on Computers, vol. 26, no. 12, pp. 1182–1191, 1977. [click]CrossRefMATHGoogle Scholar
  20. [20]
    M. I. Corradini and G. A. Orlando, “A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV,” Proc. of IEEE Transactions On Control Systems Technology, vol. 5, no. 3, pp. 349–359, 1997.CrossRefGoogle Scholar
  21. [21]
    E. Charniak and D. McDermott, A Bayesian Model of Plan Recognition, Addison-Wesley, Massachusetts, 1985.Google Scholar
  22. [22]
    ARDUINO. Arduino MEGA 2560. Available in https:// www.arduino.cc/en/Main/ArduinoBoardMega2560#. Access in Nov. 2015.Google Scholar
  23. [23]
    L. Mesquita and P. M. S. R. Rizol, “Implementação de processador digital baseado em lógica fuzzy usando um FPGA,” Proc. of 4th International Congress on University-Industry Cooperation, vol. 4, pp. 1–12, 2012.Google Scholar
  24. [24]
    G. D. M. Simonsen, Resgate Utilizando Robô Real, PUC, Departamento de Engenharia Elétrica, São Paulo, 2011.Google Scholar
  25. [25]
    S. Sandri and C. Correa, Lógica Nebulosa, Escola de RN,Julho/1999, ITA–São José dos Campos/SP, 1999.Google Scholar
  26. [26]
    F. H. T. Vieira, L. M. C. Sousa, and L. L. Ling, “Esquema de controle adaptativo de tráfego de redes baseado em um algoritmo de predição Fuzzy,” SBA Controle & Automação Sociedade Brasileira de Automática, vol. 19, no. 3, pp. 281–301, 2008. [click]CrossRefGoogle Scholar
  27. [27]
    A. Durresi, M. Sridharan, and R. Jain, “Congestion control using adaptive multilevel early congestion notification,” International Journal of High Performance Computing and Networking, vol. 5, no. 1/2, 2007.Google Scholar
  28. [28]
    R. Q. Hu and D. W. Petr, “A predictive self-tuning fuzzylogic feedback rate controller,” Proc. of IEEE/ACM Transactions on Networking, vol. 8, no. 6, pp. 697–709, 2000. [click]CrossRefGoogle Scholar
  29. [29]
    B. Chen, X. Liu, and S. Tong, “Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems,” Proc. of IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 287–300, 2007.CrossRefGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technologists trained by Faculdade de Tecnologia Termomecanica FTTEstrada dos Alvarengas, 4.001São Bernardo do CampoBrazil
  2. 2.Professor of Automation and Control Engineering and Food Engineering, Faculdade de Tecnologia Termomecanica FTTEstrada dos Alvarengas, 4.001São Bernardo do CampoBrazil
  3. 3.Professor of Automation and Control Engineering, Faculdade de Tecnologia Termomecanica FTTEstrada dos Alvarengas, 4.001São Bernardo do CampoBrazil
  4. 4.Professor of Engineering in Faculdade das Américas FAMSão BernardoBrazil
  5. 5.Technologist trained by Faculdade de Tecnologia Termomecanica FTTEstrada dos Alvarengas, 4.001São Bernardo do CampoBrazil

Personalised recommendations