Advertisement

Direct power control of grid connected voltage source inverters using port-controlled Hamiltonian system

  • Yonghao Gui
  • Gil Ha Lee
  • Chunghun Kim
  • Chung Choo Chung
Regular Papers Control Theory and Applications

Abstract

This paper presents a new direct active and reactive power control (DPC) scheme for a three-phase grid connected voltage source inverter (VSI) based on the passivity viewpoint using the port-controlled Hamiltonian (PCH) system. The proposed controller consists of feedforward and feedback parts. The feedforward part (the reference inputs) is generated through the flatness of the dynamics of the VSI model, which makes the error dynamics in the form of PCH system. The nonlinear feedback part is designed to enhance the damping of the error dynamics by using its Lyapunov function. The proposed control method has an ability of the finite time reaching condition similar to sliding mode control (SMC). Moreover, the exponential stability and uniform performance are guaranteed over all operating points without need for reaching a certain manifold. The proposed method is validated by using an experiment through hardware-in-the-loop system with a digital signal processor. The experimental results for the proposed method are compared with those using SMC-DPC method. The proposed method significantly reduces the total harmonic distortion in the output current without deteriorating the transient response of the active and reactive powers. In addition, it provides robust performance against the line impedance variations and the grid voltage sag.

Keywords

Direct power control (DPC) passivity port-controlled Hamiltonian system power quality voltage source inverter (VSI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 708–719, 2012.CrossRefGoogle Scholar
  2. [2]
    Y. Gui, D. E. Chang, and C. C. Chung, “Tracking controller design methodology for passive port-controlled Hamiltonians with application to type-2 STATCOM systems,” Proc. of IEEE Conf. Dec. Contr., 2013, pp. 1653–1658.Google Scholar
  3. [3]
    J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R. Teodorescu, “Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1271–1280, 2013. [click]CrossRefGoogle Scholar
  4. [4]
    S.-K. Kim, S.-Y. Son, and Y. I. Lee, “Use of model predictive controller in dual-loop control of three-phase PWM AC/DC converter,” International Journal of Control, Automation and Systems, vol. 12, no. 2, pp. 340–348, 2014. [click]CrossRefGoogle Scholar
  5. [5]
    A. Hintz, U. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163–3172, 2015. [click]CrossRefGoogle Scholar
  6. [6]
    M. Malinowski, M. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, “Virtual-flux-based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1019–1027, 2001. [click]CrossRefGoogle Scholar
  7. [7]
    M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu, and J. Carrasco, “Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3934–3943, 2012. [click]CrossRefGoogle Scholar
  8. [8]
    T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, “Direct power control of PWM converter without power-source voltage sensors,” IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 473–479, 1998. [click]CrossRefGoogle Scholar
  9. [9]
    M. Malinowski, M. Jasinski, and M. P. Kazmierkowski, “Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM),” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 447–454, 2004. [click]CrossRefGoogle Scholar
  10. [10]
    A. Bouafia, J.-P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 228–236, 2010. [click]CrossRefGoogle Scholar
  11. [11]
    S. Larrinaga, M. Vidal, E. Oyarbide, and J. Apraiz, “Predictive control strategy for DC/AC converters based on direct power control,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1261–1271, 2007. [click]CrossRefGoogle Scholar
  12. [12]
    P. Antoniewicz and M. P. Kazmierkowski, “Virtual-fluxbased predictive direct power control of AC/DC converters with online inductance estimation,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4381–4390, 2008.CrossRefGoogle Scholar
  13. [13]
    J. Hu, L. Shang, Y. He, and Z. Zhu, “Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 210–222, 2011. [click]CrossRefGoogle Scholar
  14. [14]
    J. Hu and Z. Zhu, “Improved voltage-vector sequences on dead-beat predictive direct power control of reversible three-phase grid-connected voltage-source converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 254–267, 2013. [click]CrossRefGoogle Scholar
  15. [15]
    Z. Song, W. Chen, and C. Xia, “Predictive direct power control for three-phase grid-connected converters without sector information and voltage vector selection,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5518–5531, 2014. [click]CrossRefGoogle Scholar
  16. [16]
    S. Vazquez, A. Marquez, R. Aguilera, D. Quevedo, J. I. Leon, and L. G. Franquelo, “Predictive optimal switching sequence direct power control for grid-connected power converters,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2010–2020, 2015. [click]CrossRefGoogle Scholar
  17. [17]
    J. Scoltock, T. Geyer, and U. K. Madawala, “Model predictive direct power control for grid-connected NPC converters,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5319–5328, 2015.CrossRefGoogle Scholar
  18. [18]
    R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar, “Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–596, 2002. [click]MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Ortega and E. Garcia-Canseco, “Interconnection and damping assignment passivity-based control: A survey,” European Journal of control, vol. 10, no. 5, pp. 432–450, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Gui, W. Kim, and C. C. Chung, “Passivity-based control with nonlinear damping for type 2 STATCOM systems,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2824–2833, July 2016. [click]CrossRefGoogle Scholar
  21. [21]
    Y. Gui, C. Kim, and C. C. Chung, “Improved low-voltage ride through capability for PMSG wind turbine based on port-controlled Hamiltonian system,” International Journal of Control, Automation and Systems, vol. 14, no. 5, pp. 1195–1204, 2016. [click]CrossRefGoogle Scholar
  22. [22]
    R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar, “Energy-shaping of port-controlled Hamiltonian systems by interconnection,” Proc. of IEEE Conf. Dec. Contr., vol. 2, 1999, pp. 1646–1651.Google Scholar
  23. [23]
    H. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, 2002.zbMATHGoogle Scholar
  24. [24]
    P. A. Ioannou and J. Sun, Robust Adaptive Control, Courier Corporation, 2012.zbMATHGoogle Scholar
  25. [25]
    D. Majstorovic, I. Celanovic, N. D. Teslic, N. Celanovic, and V. A. Katic, “Ultralow-latency hardware-in-the-loop platform for rapid validation of power electronics designs,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4708–4716, 2011. [click]CrossRefGoogle Scholar
  26. [26]
    M. Kazmierkowski, M. Jasinski, and G. Wrona, “DSPbased control of grid-connected power converters operating under grid distortions,” IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 204–211, 2011. [click]CrossRefGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yonghao Gui
    • 1
  • Gil Ha Lee
    • 2
    • 3
  • Chunghun Kim
    • 1
  • Chung Choo Chung
    • 4
  1. 1.Department of Electrical EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Advanced Power Conversion SystemHanyang UniversitySeoulKorea
  3. 3.Next Generation Communication Module T/FSumsung Electro-MechanicsGyeonggi-DoKorea
  4. 4.Division of Electrical and Biomedical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations