Soft robot review

  • Chiwon Lee
  • Myungjoon Kim
  • Yoon Jae Kim
  • Nhayoung Hong
  • Seungwan Ryu
  • H. Jin Kim
  • Sungwan Kim
Special Issue: Soft Robotics

Abstract

Soft robots are often inspired from biological systems which consist of soft materials or are actuated by electrically activated materials. There are several advantages of soft robots compared to the conventional robots; safe human-machine interaction, adaptability to wearable devices, simple gripping system, and so on. Due to the unique features and advantages, soft robots have a considerable range of applications. This article reviews state-of-the-art researches on soft robots and application areas. Actuation systems for soft robots can be categorized and analyzed into three types: variable length tendon, fluidic actuation, and electro-active polymer (EAP). The deformable property of soft robots restricts the use of many conventional rigid sensors such as encoders, strain gauges, or inertial measurement units. Thus, contactless approaches for sensing and/or sensors with low modulus are preferable for soft robots. Sensors include low modulus (< 1 MPa) elastomers with liquid-phase material filled channels and are appropriate for proprioception which is determined by the degree of curvature. In control perspective, novel control idea should be developed because the conventional control techniques may be inadequate to handle soft robots. Several innovative techniques and diverse materials & fabrication methods are described in this review article. In addition, a wide range of soft robots are characterized and analyzed based on the following sub-categories; actuation, sensing, structure, control and electronics, materials, fabrication and system, and applications.

Keywords

Biological systems flexible materials smart structure soft robotics soft structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Hülse, S. Wischmann, and F. Pasemann, The Role of Non-linearity for Evolved Multifunctional Robot Behavior, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.CrossRefGoogle Scholar
  2. [2]
    D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, pp. 467–475, 2015. [click]CrossRefGoogle Scholar
  3. [3]
    Untethered soft robot. https://www.youtube.com/watch?v=_OJrwCP24cIGoogle Scholar
  4. [4]
    Soft Robot Walking and Crawling. https://www.youtube.com/watch?v=2DsbS9cMOAEGoogle Scholar
  5. [5]
    Soft Robot Uses Explosions to Jump. https://www. youtube.com/watch?v=dkUtNPwm2wcGoogle Scholar
  6. [6]
    iRobot’s Soft Morphing Blob’ Bot Takes Its First Steps. https://www.youtube.com/watch?v=SbqHERKdlK8Google Scholar
  7. [7]
    Field experiments with the OctArm continuum manipulator. https://www.youtube.com/watch?v=6fhpt6MWDDEGoogle Scholar
  8. [8]
    A novel type of compliant, underactuated robotic hand for dexterous grasping. https://www.youtube.com/watch? v=Tbg-vo5Tx34Google Scholar
  9. [9]
    Soft Robotics 03: Manta Robot. https://www.youtube.com/ watch?v=mTjhXKIXc90Google Scholar
  10. [10]
    Autonomous, self-contained soft robotic fish at MIT. https://www.youtube.com/watch?v=BSA_zb1ajesGoogle Scholar
  11. [11]
    Soft Robotic Glove. https://www.youtube.com/watch?v=Ef6Ebc8RtLQGoogle Scholar
  12. [12]
    Octopus-Inspired Robots Can Grasp, Crawl, and Swim. https://www.youtube.com/watch?v=L7FEJJsvHRQGoogle Scholar
  13. [13]
    Soft autonomous earthworm robot at MIT. https://www.youtube.com/watch?v=EXkf62qGFIIGoogle Scholar
  14. [14]
    GoQBot. https://www.youtube.com/watch?v=a-1AiExU3VkGoogle Scholar
  15. [15]
    Universal robotic gripper based on the jamming of granular material.https://www.youtube.com/watch?v= bFW7VQpY-IkGoogle Scholar
  16. [16]
    MIT’s Jammable Robot Manipulator. https://www.youtube.com/watch?v=0DNJwM8lyBoGoogle Scholar
  17. [17]
    Y. Bahramzadeh and M. Shahinpoor, “A review of ionic polymeric soft actuators and sensors,” Soft Robotics, vol. 1, pp. 38–52, 2014. [click]CrossRefGoogle Scholar
  18. [18]
    M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario, “An octopus-bioinspired solution to movement and manipulation for soft robots,” Bioinspiration & Biomimetics, vol. 6, p 036002, 2011. [click]CrossRefGoogle Scholar
  19. [19]
    N. G. Cheng, M. B. Lobovsky, S. J. Keating, A. M. Setapen, K. I. Gero, A. E. Hosoi, and K. D. Iagnemma, “Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media,” 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4328–4333, 2012.CrossRefGoogle Scholar
  20. [20]
    S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim, “Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18, pp. 1485–1497, 2013.CrossRefGoogle Scholar
  21. [21]
    H. T. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: a caterpillar-inspired soft-bodied rolling robot,” Bioinspir Biomim, vol. 6, p 026007, 2011. [click]CrossRefGoogle Scholar
  22. [22]
    C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft robot arm inspired by the octopus,” Advanced Robotics, vol. 26, pp. 709–727, 2012. [click]CrossRefGoogle Scholar
  23. [23]
    H. Schulte Jr, “The characteristics of the McKibben artificial muscle,” The Application of External Power in Prosthetics and Orthotics (Washington, DC: Nat. Acad. Sci.-Nat. Res. Council), vol., 1961.Google Scholar
  24. [24]
    C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, pp. 90–102, 1996.CrossRefGoogle Scholar
  25. [25]
    M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, and G. M. Whitesides, “A Resilient, Untethered Soft Robot,” Soft Robotics, vol. 1, pp. 213–223, 2014.CrossRefGoogle Scholar
  26. [26]
    R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft robot,” Proc Natl Acad Sci U S A, vol. 108, pp. 20400–20403, 2011. [click]CrossRefGoogle Scholar
  27. [27]
    B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, “Pneumatic networks for soft robotics that actuate rapidly,” Advanced Functional Materials, vol. 24, pp. 2163–2170, 2014. [click]CrossRefGoogle Scholar
  28. [28]
    S. A. Morin, R. F. Shepherd, S.W. Kwok, A. A. Stokes, A. Nemiroski, and G. M. Whitesides, “Camouflage and display for soft machines,” Science, vol. 337, pp. 828–832, 2012. [click]CrossRefGoogle Scholar
  29. [29]
    D. O. Cagdas and R. Daniela, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspiration & Biomimetics, vol. 8, p 026003, 2013. [click]CrossRefGoogle Scholar
  30. [30]
    E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger, “JSEL: Jamming skin enabled locomotion,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5672–5677, 2009.Google Scholar
  31. [31]
    C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, “Soft mobile robots with on-board chemical pressure generation,” Proc. of International Symposium on Robotics Research, pp. 1–16, 2011.Google Scholar
  32. [32]
    M. T. Tolley, R. F. Shepherd, M. Karpelson, N.W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood, “An untethered jumping soft robot,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561–566, 2014.Google Scholar
  33. [33]
    K. Suzumori, S. Iikura, and H. Tanaka, “Applying a flexible microactuator to robotic mechanisms,” Control Systems, IEEE, vol. 12, pp. 21–27, 1992.CrossRefGoogle Scholar
  34. [34]
    W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A. Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn, “Field trials and testing of the OctArm continuum manipulator,” Proc. of IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 2336–2341, 2006.CrossRefGoogle Scholar
  35. [35]
    F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft robotics for chemists,” Angew Chem Int Ed Engl, vol. 50, pp. 1890–1895, 2011. [click]CrossRefGoogle Scholar
  36. [36]
    R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic hand for dexterous grasping,” The International Journal of Robotics Research, vol., 2015.Google Scholar
  37. [37]
    S. Sanan, P. S. Lynn, and S. T. Griffith, “Pneumatic torsional actuators for inflatable robots,” Journal of Mechanisms and Robotics, vol. 6, pp. 031003–031003, 2014.CrossRefGoogle Scholar
  38. [38]
    A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, and G. M. Whitesides, “A hybrid combining hard and soft robots,” Soft Robotics, vol. 1, pp. 70–74, 2014. [click]CrossRefGoogle Scholar
  39. [39]
    K. Suzumori, S. Endo, T. Kanda, N. Kato, and H. Suzuki, “A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot,” Proc. of IEEE International Conference on Robotics and Automation, pp. 4975–4980, 2007.Google Scholar
  40. [40]
    R. K. Katzschmann, A. D. Marchese, and D. Rus, “Hydraulic autonomous soft robotic fish for 3D swimming,” Experimental Robotics, pp. 405–420, 2016. [click]CrossRefGoogle Scholar
  41. [41]
    P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Robotics and Autonomous Systems, vol. 73, pp. 135–143, 2015. [click]CrossRefGoogle Scholar
  42. [42]
    K. J. Kim and S. Tadokoro, “Electroactive polymers for robotic applications,” Artificial Muscles and Sensors (291 p.), Springer: London, United Kingdom, vol., 2007.CrossRefGoogle Scholar
  43. [43]
    E. N. Gama Melo, O. F. Aviles Sanchez, and D. Amaya Hurtado, “Anthropomorphic robotic hands: a review,” Ingeniería y Desarrollo, vol. 32, pp. 279–313, 2014.CrossRefGoogle Scholar
  44. [44]
    Y. Bar-Cohen, “EAP as artificial muscles: progress and challenges,” Smart Structures and Materials, pp. 10–16, 2004. [click]Google Scholar
  45. [45]
    Y. Nakabo, T. Mukai, K. Ogawa, N. Ohnishi, and K. Asaka, “Biomimetic soft robot using artificial muscle,” Proc. of IEEE/RSJ Int. Conf. Intelligent Robots and Systems, in tutorial, WTP3 Electro-Active Polymer for Use in Robotics, 2004.Google Scholar
  46. [46]
    K. Ogawa, Y. Nakabo, T. Mukai, K. Asaka, and N. Ohnishi, “A snake-like swimming artificial muscle,” Proc. of The 2nd Conf. on Artificial Muscles, Osaka, 2004.Google Scholar
  47. [47]
    Y. Nakabo, T. Mukai, and K. Asaka, “A multi-DOF robot manipulator with a patterned artificial muscle,” Proc. of The 2nd Conf. on Artificial Muscle, Osaka, 2004.Google Scholar
  48. [48]
    Y. Nakabo, T. Mukai, and K. Asaka, “Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle,” Proc. of IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 4315–4320, 2005.CrossRefGoogle Scholar
  49. [49]
    S. Guo, T. Fukuda, and K. Asaka, “A new type of fishlike underwater microrobot,” IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 136–141, 2003.CrossRefGoogle Scholar
  50. [50]
    M. Mojarrad and M. Shahinpoor, “Biomimetic robotic propulsion using polymeric artificial muscles,” Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, pp. 2152–2157, 1997.Google Scholar
  51. [51]
    D. M. Vogt, Y.-L. Park, and R. J. Wood, “Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels,” IEEE Sensors Journal, vol. 13, pp. 4056–4064, 2013.CrossRefGoogle Scholar
  52. [52]
    C. Majidi, R. Kramer, and R. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Materials and Structures, vol. 20, p 105017, 2011. [click]CrossRefGoogle Scholar
  53. [53]
    R. K. Kramer, C. Majidi, R. Sahai, and R. J. Wood, “Soft curvature sensors for joint angle proprioception,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1919–1926, 2011.Google Scholar
  54. [54]
    R. D. P. Wong, J. D. Posner, and V. J. Santos, “Flexible microfluidic normal force sensor skin for tactile feedback,” Sensors and Actuators A: Physical, vol. 179, pp. 62–69, 2012. [click]CrossRefGoogle Scholar
  55. [55]
    J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Advanced Materials, vol. 26, pp. 6307–6312, 2014. [click]CrossRefGoogle Scholar
  56. [56]
    R. K. Kramer, C. Majidi, and R. J. Wood, “Masked deposition of Gallium-Indium alloys for liquid-embedded elastomer conductors,” Advanced Functional Materials, vol. 23, pp. 5292–5296, 2013. [click]CrossRefGoogle Scholar
  57. [57]
    W. Felt and C. D. Remy, “Smart braid: air muscles that measure force and displacement,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2821–2826, 2014.Google Scholar
  58. [58]
    W. Felt, K. Y. Chin, and C. D. Remy, “Contraction sensing with smart braid McKibben muscles,” IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 1201–1209, 2016.CrossRefGoogle Scholar
  59. [59]
    M. Shahinpoor, Y. Bar-Cohen, J. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review,” Smart Materials and Structures, vol. 7, p R15, 1998. [click]CrossRefGoogle Scholar
  60. [60]
    M. Mojarrad and M. Shahinpoor, “Ion-exchange-metal composite sensor films,” Smart Structures and Materials’ 97, pp. 52–60, 1997.Google Scholar
  61. [61]
    Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-L. Zhou, G.-Z. Yang, N. Zhao, and Y.-T. Zhang, “Unobtrusive sensing and wearable devices for health informatics,” IEEE Transactions on Biomedical Engineering, vol. 61, pp. 1538–1554, 2014.CrossRefGoogle Scholar
  62. [62]
    K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, and D. F. Gruber, “Soft robotic grippers for biological sampling on deep reefs,” Soft Robotics, vol. 3, pp. 23–33, 2016. [click]CrossRefGoogle Scholar
  63. [63]
    E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proceedings of the National Academy of Sciences, vol. 107, pp. 18809–18814, 2010. [click]CrossRefGoogle Scholar
  64. [64]
    J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the hamming of granular material,” IEEE Transactions on Robotics, vol. 28, pp. 341–350, 2012.CrossRefGoogle Scholar
  65. [65]
    J. L. Tangorra, A. P. Mignano, G. N. Carryon, and J. C. Kahn, “Biologically derived models of the sunfish for experimental investigations of multi-fin swimming,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 580–587, 2011.CrossRefGoogle Scholar
  66. [66]
    A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,” Soft Robotics, vol. 1, pp. 75–87, 2014. [click]CrossRefGoogle Scholar
  67. [67]
    R. Stopforth and G. Bright, “MechaBird: a biological inspired mechatronics bird for the evaluation of flight characteristics,” Proc. of IEEE International Conference on Automation Science and Engineering (CASE), pp. 335–341, 2015.Google Scholar
  68. [68]
    D. G. Caldwell, G. A. Medranocerda, and M. Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems Magazine, vol. 15, pp. 40–48, 1995.CrossRefGoogle Scholar
  69. [69]
    D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow,” Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pp. 3558–3563, 1994.CrossRefGoogle Scholar
  70. [70]
    M. T. Gillespie, C. M. Best, and M. D. Killpack, “Simultaneous position and stiffness control for an inflatable soft robot,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1095–1101, 2016.Google Scholar
  71. [71]
    J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science, vol. 327, pp. 1603–1607, 2010. [click]CrossRefGoogle Scholar
  72. [72]
    K. H. Low, J. Yang, A. P. Pattathil, and Y. Zhang, “Initial prototype design and iInvestigation of an undulating body by SMA,” Proc. of IEEE International Conference on Automation Science and Engineering, pp. 472–477, 2006.Google Scholar
  73. [73]
    Z. Chen, T. I. Um, J. Zhu, and H. Bart-Smith, “Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin,” ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 817–824, 2011.Google Scholar
  74. [74]
    A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, and G. M. Whitesides, “A hybrid combining hard and soft robots,” Soft Robotics, vol. 1, pp. 70–74, 2013. [click]CrossRefGoogle Scholar
  75. [75]
    M. Cianchetti, T. Ranzani, G. Gerboni, I. D. Falco, C. Laschi, and A. Menciassi, “STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3576–3581, 2013.CrossRefGoogle Scholar
  76. [76]
    R. Merz, F. B. Prinz, K. Ramaswami, M. Terk, and L. Weiss, “Shape deposition manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, 1994.Google Scholar
  77. [77]
    Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber bragg grating sensors and shape deposition manufacturing,” Proc. of IEEE International Conference on Robotics and Automation, pp. 1510–1516, 2007.Google Scholar
  78. [78]
    S. Kim, J. E. Clark, and M. R. Cutkosky, “iSprawl: design and tuning for high-speed autonomous open-loop running,” The International Journal of Robotics Research, vol. 25, pp. 903–912, 2006. [click]CrossRefGoogle Scholar
  79. [79]
    D. Santos, B. Heyneman, S. Kim, N. Esparza, and M. R. Cutkosky, “Gecko-inspired climbing behaviors on vertical and overhanging surfaces,” Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 1125–1131, 2008.Google Scholar
  80. [80]
    J. G. Cham, S. A. Bailey, J. E. Clark, R. J. Full, and M. R. Cutkosky, “Fast and robust: hexapedal robots via shape deposition manufacturing,” The International Journal of Robotics Research, vol. 21, pp. 869–882, 2002.CrossRefGoogle Scholar
  81. [81]
    K. Hosoda, Y. Tada, and M. Asada, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems, vol. 54, pp. 104–109, 2006. [click]CrossRefGoogle Scholar
  82. [82]
    E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J. Wood, “Programmable matter by folding,” Proceedings of the National Academy of Sciences, vol. 107, pp. 12441–12445, 2010. [click]CrossRefGoogle Scholar
  83. [83]
    O. P.-A. Néstor, Y. M. Kevin, C. G. Kevin, D. G. Jack, and J. W. Robert, “First controlled vertical flight of a biologically inspired microrobot,” Bioinspiration & Biomimetics, vol. 6, p 036009, 2011. [click]CrossRefGoogle Scholar
  84. [84]
    K. Peterson, P. Birkmeyer, R. Dudley, and R. S. Fearing, “A wing-assisted running robot and implications for avian flight evolution,” Bioinspiration & Biomimetics, vol. 6, p 046008, 2011. [click]Google Scholar
  85. [85]
    T. Umedachi, V. Vikas, and B. A. Trimmer, “Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4590–4595, 2013.Google Scholar
  86. [86]
    M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feedforward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5033–5039, 2013.Google Scholar
  87. [87]
    S. Frank, A. T. Barry, and R. Jason, “Modeling locomotion of a soft-bodied arthropod using inverse dynamics,” Bioinspiration & Biomimetics, vol. 6, p 016001, 2011. [click]CrossRefGoogle Scholar
  88. [88]
    A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft and continuously deformable 2D robotic manipulation system,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2189–2196, 2014.Google Scholar
  89. [89]
    A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” The International Journal of Robotics Research, 2015.Google Scholar
  90. [90]
    F. J. Chen, S. Dirven, W. L. Xu, and X. N. Li, “Soft Actuator Mimicking Human Esophageal Peristalsis for a swallowing robot,” IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 1300–1308, 2014.CrossRefGoogle Scholar
  91. [91]
    F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,” Bioinspiration & Biomimetics, vol. 7, p 025006, 2012. [click]CrossRefGoogle Scholar
  92. [92]
    M. Cianchetti, M. Follador, B. Mazzolai, P. Dario, and C. Laschi, “Design and development of a soft robotic octopus arm exploiting embodied intelligence,” Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 5271–5276, 2012.CrossRefGoogle Scholar
  93. [93]
    C. Laschi and M. Cianchetti, “Soft robotics: new perspectives for robot bodyware and control,” Frontiers in Bioengineering and Biotechnology, vol. 2, 2014.Google Scholar
  94. [94]
    A. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial Intelligence in Engineering, vol. 9, pp. 143–151, 1995. [click]CrossRefGoogle Scholar
  95. [95]
    M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed forward neural network for solving the inverse kinetics of non-constant curvature soft manipulators driven by cables,” Proc. of ASME Dynamic Systems and Control Conference, pp. 823–834, 2013.Google Scholar
  96. [96]
    M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, “Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature,” IEEE Transactions on Robotics, vol. 31, pp. 823–834, 2015.CrossRefGoogle Scholar
  97. [97]
    J. Rieffel, F. Saunders, S. Nadimpalli, H. Zhou, S. Hassoun, J. Rife, and B. Trimmer, Evolving Soft Robotic Locomotion in PhysX, ACM, Montreal, pp. 2499–2504, Canada, 2009.Google Scholar
  98. [98]
    C. Majidi, “Soft robotics: a perspective-current trends and prospects for the future,” Soft Robotics, vol. 1, pp. 5–11, 2014. [click]CrossRefGoogle Scholar
  99. [99]
    N. Correll, Ç. D. Önal, H. Liang, E. Schoenfeld, and D. Rus, Soft Autonomous Materials-Using Active Elasticity and Embedded Distributed Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.CrossRefGoogle Scholar
  100. [100]
    W. Wei, L. Jang-Yeob, R. Hugo, S. Sung-Hyuk, C. Won-Shik, and A. Sung-Hoon, “Locomotion of inchworminspired robot made of smart soft composite (SSC),” Bioinspiration & Biomimetics, vol. 9, p 046006, 2014. [click]CrossRefGoogle Scholar
  101. [101]
    M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi, “Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot,” Bioinspiration & Biomimetics, vol. 10, p 035003, 2015. [click]CrossRefGoogle Scholar
  102. [102]
    M. Calisti, A. Arienti, F. Renda, G. Levy, B. Hochner, B. Mazzolai, P. Dario, and C. Laschi, “Design and development of a soft robot with crawling and grasping capabilities,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4950–4955, 2012.Google Scholar
  103. [103]
    F. Renda, F. Giorgio-Serchi, F. Boyer, and C. Laschi, “Locomotion and elastodynamics model of an underwater shell-like soft robot,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1158–1165, 2015.Google Scholar
  104. [104]
    Y. Sugiyama and S. Hirai, “Crawling and jumping by a deformable robot,” The International Journal of Robotics Research, vol. 25, pp. 603–620, 2006. [click]CrossRefGoogle Scholar
  105. [105]
    R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L. Cademartiri, S. A. Morin, and G. M. Whitesides, “Using explosions to power a soft robot,” Angewandte Chemie International Edition, vol. 52, pp. 2892–2896, 2013. [click]CrossRefGoogle Scholar
  106. [106]
    N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, “A 3D-printed, functionally graded soft robot powered by combustion,” Science, vol. 349, pp. 161–165, 2015. [click]CrossRefGoogle Scholar
  107. [107]
    R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. M. D. Nunes, Z. Suo, and G. M. Whitesides, “Robotic tentacles with three-dimensional mobility based on flexible elastomers,” Advanced Materials, vol. 25, pp. 205–212, 2013. [click]CrossRefGoogle Scholar
  108. [108]
    B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, and C. Laschi, “Soft-robotic arm inspired by the octopus: II. from artificial requirements to innovative technological solutions,” Bioinspiration & Biomimetics, vol. 7, p 025005, 2012. [click]CrossRefGoogle Scholar
  109. [109]
    R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous object manipulation using a soft planar grasping manipulator,” Soft Robotics, vol. 2, pp. 155–164, 2015. [click]CrossRefGoogle Scholar
  110. [110]
    C. Lee, W. J. Park, M. Kim, S. Noh, C. Yoon, C. Lee, Y. Kim, H. H. Kim, H. C. Kim, and S. Kim, “Pneumatictype surgical robot end-effector for laparoscopic surgicaloperation-by-wire,” Biomed Eng Online, vol. 13, p 130, 2014.CrossRefGoogle Scholar
  111. [111]
    A. Jiang, E. Secco, H. Wurdemann, T. Nanayakkara, P. Dasgupta, and K. Athoefer, “Stiffness-controllable octopus-like robot arm for minimally invasive surgery,” Workshop on New Technologies for Computer/Robot Assisted Surgery, 2013.Google Scholar
  112. [112]
    M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach,” Soft Robotics, vol. 1, pp. 122–131, 2014. [click]CrossRefGoogle Scholar
  113. [113]
    S. Sareh, A. Jiang, A. Faragasso, Y. Noh, T. Nanayakkara, P. Dasgupta, L. D. Seneviratne, H. A. Wurdemann, and K. Althoefer, “Bio-inspired tactile sensor sleeve for surgical soft manipulators,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1454–1459, 2014.Google Scholar
  114. [114]
    T. Deng, H. Wang, W. Chen, X. Wang, and R. Pfeifer, “Development of a new cable-driven soft robot for cardiac ablation,” Proc. of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 728–733, 2013.Google Scholar
  115. [115]
    P. Maeder-York, T. Clites, E. Boggs, R. Neff, P. Polygerinos, D. Holland, L. Stirling, K. Galloway, C. Wee, and C. Walsh, “Biologically inspired soft robot for thumb rehabilitation,” Journal of Medical Devices, vol. 8, p 020933, 2014. [click]CrossRefGoogle Scholar
  116. [116]
    P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O. Donnell, and C. J. Walsh, “Soft robotic glove for hand rehabilitation and task specific training,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919, 2015.Google Scholar
  117. [117]
    H. K. Yap, J. C. H. Goh, and R. C. H. Yeow, Design and Characterization of Soft Actuator for Hand Rehabilitation Application, Springer International Publishing, Cham, 2015.CrossRefGoogle Scholar
  118. [118]
    H. K. Yap, L. Jeong Hoon, F. Nasrallah, J. C. H. Goh, and R. C. H. Yeow, “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4967–4972, 2015.Google Scholar
  119. [119]
    Y. S. Song, Y. Sun, R. v. d. Brand, J. v. Zitzewitz, S. Micera, G. Courtine, and J. Paik, “Soft robot for gait rehabilitation of spinalized rodents,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 971–976, 2013.Google Scholar
  120. [120]
    A. T. Asbeck, R. J. Dyer, A. F. Larusson, and C. J. Walsh, “Biologically-inspired soft exosuit,” Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on, pp. 1–8, 2013.CrossRefGoogle Scholar
  121. [121]
    P. Yong-Lae, C. Bor-rong, O. P.-A. Néstor, Y. Diana, S. Leia, J.W. Robert, C. G. Eugene, and N. Radhika, “Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation,” Bioinspiration & Biomimetics, vol. 9, p 016007, 2014. [click]CrossRefGoogle Scholar
  122. [122]
    J. A. Gallego, E. Rocon, J. Ib, x00E, x00F, ez, J. L. Dideriksen, A. D. Koutsou, R. Paradiso, M. B. Popovic, J. M. Belda-Lois, F. Gianfelici, D. Farina, D. B. Popovic, M. Manto, T. D. Alessio, and J. L. Pons, “A soft wearable robot for tremor assessment and suppression,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2249–2254, 2011.Google Scholar
  123. [123]
    Y. Sun, C. M. Lim, H. H. Tan, and H. Ren, “Soft oral interventional rehabilitation robot based on low-profile soft pneumatic actuator,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2907–2912, 2015.Google Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chiwon Lee
    • 1
  • Myungjoon Kim
    • 2
  • Yoon Jae Kim
    • 2
  • Nhayoung Hong
    • 2
  • Seungwan Ryu
    • 3
  • H. Jin Kim
    • 3
  • Sungwan Kim
    • 4
  1. 1.Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulKorea
  2. 2.Interdisciplinary Program for Bioengineering, Graduate SchoolSeoul National UniversitySeoulKorea
  3. 3.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  4. 4.Department of Biomedical EngineeringSeoul National University College of MedicineSeoulKorea

Personalised recommendations