Skip to main content
Log in

A controllability synthesis problem for dynamic multi-agent systems with linear high-order protocol

  • Technical Notes and Correspondence
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

In this paper, a problem on controllability synthesis for dynamic multi-agent systems with high-order linear protocol is addressed. A particular scenario is considered, in which a given system should be adjusted to be controllable by the input information upon the created leaders, with optional communication links from the leaders to each follower vertex in the graph. It is shown that a single leader is always sufficient to satisfy the requirement for controllability of any given graph topology, so long as there are proper links between the leader and the followers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Gilbert, “Controllability and observability in multivariable control systems,” SIAM J. Control, vol. 1, no. 2, pp. 128–151, 1963.

    MATH  Google Scholar 

  2. E. J. Davison and S.-H. Wang, “New results on the controllability and observability of composite systems,” IEEE Trans. Autom. Control, vol. 20, no. 1, pp. 123–128, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. J. Davison, “Connectability and structural controllability of composite systems,” Automatica, vol. 13, no. 2, pp. 109–123, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.-T. Lin, “Structural controllability,” IEEE Trans. Autom. Control, vol. 19, pp. 201–208, 1974.

    Article  MATH  Google Scholar 

  5. R. M. Zazworsky and H. K. Knudsen, “Controllability and observability of linear time-invariant compartmental models,” IEEE Trans. Autom. Control, vol. 23, no. 5, pp. 872–877, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Kobayashi and T. Yoshikawa, “Graph-theoretic approach to controllability and localizability of decentralized control systems,” IEEE Trans. Autom. Control, vol. 27, no. 5, pp. 1096–1108, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. G. Tanner, “On the controllability of nearest neighbor interconnections,” Proc. 43rd IEEE Conf. Decision and Control, vol. 3, pp. 2467–2472, 2004.

    Google Scholar 

  8. M. Ji, A. Muhammad, and M. Egerstedt, “Leader-based multi-agent coordination: controllability and optimal control,” Proc. Am. Control Conf., 2006.

    Google Scholar 

  9. A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of multi-agent systems from a graph-theoretic perspective,” SIAM J. Control Optim., vol. 48, no. 1, pp. 162–186, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Cai and Y.-S. Zhong, “Formation controllability of high order linear time-invariant swarm systems,” IET Control Theory Appl., vol. 4, no. 4, pp. 646–654, 2010.

    Article  MathSciNet  Google Scholar 

  11. N. Cai, J.-X. Xi, Y.-S. Zhong, and H.-Y. Ma, “Controllability improvement for linear time-invariant dynamical multi-agent systems,” Int. J. Innov. Comput. I., vol. 8, no. 5a, pp. 3315–3328, 2012.

    Google Scholar 

  12. N. Cai, Swarm Stability and Controllability of High-Order Swarm Systems (In Chinese), Doctoral Dissertation, Tsinghua Univ., Beijing, 2010.

    Google Scholar 

  13. B. Liu, T.-G. Chu, and L. Wang et al., “Controllability of a leader-follower dynamic network with switching topology,” IEEE Trans. Autom. Control, vol. 53, no. 4, pp. 1009–1013, 2008.

    Article  MathSciNet  Google Scholar 

  14. L. Wang, F.-C Jiang, G.-M. Xie, and Z. Ji, “Controllability of multi-agent systems based on agreement protocols,” Sci. China Ser. F-Inf. Sci., vol. 52, no. 1, pp. 2074–2088, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  15. Z.-J. Ji, Z.-D. Wang, H. Lin, and Z. Wang, “Interconnection topologies for multi-agent coordination under leader-follower framework,” Automatica, vol. 45, no. 12, pp. 2857–2863, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Liu, J. Slotine, and A. Barabasi, “Controllability of complex networks,” Nature, vol. 473, pp. 167–173, 2011.

    Article  Google Scholar 

  17. B. Liu, W.-N. Hu, J. Zhang, and H.-S. Su, “Controllability of discrete-time multi-agent systems with multiple leaders on fixed networks,” Commun. Theor. Phys., vol. 58, no. 6, pp. 856–862, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Ni, X.-L. Wang, and C. Xiong, “Consensus controllability, observability and robust design for leader-following linear multi-agent systems,” Automatica, vol. 49, no. 7, pp. 2199–2205, 2013.

    Article  MathSciNet  Google Scholar 

  19. M.-G. Yoon, “Single agent control for cyclic consensus systems,” Int. J. Control Autom. Syst., vol. 11, no. 2, pp. 243–249, 2013.

    Article  Google Scholar 

  20. D.-P. Yang, Z. Chen, and X.-D. Liu, “Distributed adaptive attitude tracking of multiple spacecraft with a leader of nonzero input,” Int. J. Control Autom. Syst., vol. 11, no. 5, pp. 938–946, 2013.

    Article  Google Scholar 

  21. H.-Q. Li, X.-F. Liao, and G. Chen, “Leader-following finite-time consensus in second-order multi-agent networks with nonlinear dynamics,” Int. J. Control Autom. Syst., vol. 11, no. 2, pp. 422–426, 2013.

    Article  Google Scholar 

  22. N. Cai, J.-X. Xi, and Y.-S. Zhong, “Asymptotic swarm stability of high order dynamical multiagent systems: condition and application,” Control and Intelligent Systems, vol. 40, no. 1, pp. 33–39, 2012.

    Article  MathSciNet  Google Scholar 

  23. X.-F. Wang, Y. Chen, G. Lu, and Y.-S. Zhong, “Robust flight control of small-scale unmanned helicopter,” Proc. Chinese Control Conf., pp. 2700–2705, 2013.

    Google Scholar 

  24. F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation flight,” IEEE Control Syst. Mag., vol. 20, no. 6, pp. 34–44, 2000.

    Article  Google Scholar 

  25. M. G. Richiardi, “Agent-based computational economics: a short introduction,” Knowl. Eng. Rev., vol. 27, no. 2, pp. 137–149, 2012.

    Article  Google Scholar 

  26. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  27. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Cai.

Additional information

Recommended by Associate Editor Shengyuan Xu under the direction of Editor Zengqi Sun.

This work was supported by National Natural Science Foundation of China (Grants 61263002, 61374054, 61174067 & 614722 00), and by Program for Young Talents of SEAC China (Grant [2013] 231).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, N., Cao, J. & Junaid Khan, M. A controllability synthesis problem for dynamic multi-agent systems with linear high-order protocol. Int. J. Control Autom. Syst. 12, 1366–1371 (2014). https://doi.org/10.1007/s12555-013-0374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-013-0374-4

Keywords

Navigation